cv2.imread(para1)
时间: 2024-06-16 21:03:56 浏览: 55
cv2.imread(para1)是OpenCV库中的一个函数,用于读取图像文件。它接受一个参数para1,表示要读取的图像文件的路径。该函数会返回一个表示图像的多维数组,可以用于后续的图像处理和分析。
需要注意的是,para1应该是一个字符串类型的参数,表示图像文件的路径。这个路径可以是相对路径或者绝对路径。如果图像文件不存在或者无法读取,函数会返回一个空的多维数组。
相关问题
这段代码什么意思def run_posmap_300W_LP(bfm, image_path, mat_path, save_folder, uv_h = 256, uv_w = 256, image_h = 256, image_w = 256): # 1. load image and fitted parameters image_name = image_path.strip().split('/')[-1] image = io.imread(image_path)/255. [h, w, c] = image.shape info = sio.loadmat(mat_path) pose_para = info['Pose_Para'].T.astype(np.float32) shape_para = info['Shape_Para'].astype(np.float32) exp_para = info['Exp_Para'].astype(np.float32) # 2. generate mesh # generate shape vertices = bfm.generate_vertices(shape_para, exp_para) # transform mesh s = pose_para[-1, 0] angles = pose_para[:3, 0] t = pose_para[3:6, 0] transformed_vertices = bfm.transform_3ddfa(vertices, s, angles, t) projected_vertices = transformed_vertices.copy() # using stantard camera & orth projection as in 3DDFA image_vertices = projected_vertices.copy() image_vertices[:,1] = h - image_vertices[:,1] - 1 # 3. crop image with key points kpt = image_vertices[bfm.kpt_ind, :].astype(np.int32) left = np.min(kpt[:, 0]) right = np.max(kpt[:, 0]) top = np.min(kpt[:, 1]) bottom = np.max(kpt[:, 1]) center = np.array([right - (right - left) / 2.0, bottom - (bottom - top) / 2.0]) old_size = (right - left + bottom - top)/2 size = int(old_size*1.5) # random pertube. you can change the numbers marg = old_size*0.1 t_x = np.random.rand()*marg*2 - marg t_y = np.random.rand()*marg*2 - marg center[0] = center[0]+t_x; center[1] = center[1]+t_y size = size*(np.random.rand()*0.2 + 0.9) # crop and record the transform parameters src_pts = np.array([[center[0]-size/2, center[1]-size/2], [center[0] - size/2, center[1]+size/2], [center[0]+size/2, center[1]-size/2]]) DST_PTS = np.array([[0, 0], [0, image_h - 1], [image_w - 1, 0]]) tform = skimage.transform.estimate_transform('similarity', src_pts, DST_PTS) cropped_image = skimage.transform.warp(image, tform.inverse, output_shape=(image_h, image_w)) # transform face position(image vertices) along with 2d facial image position = image_vertices.copy() position[:, 2] = 1 position = np.dot(position, tform.params.T) position[:, 2] = image_vertices[:, 2]*tform.params[0, 0] # scale z position[:, 2] = position[:, 2] - np.min(position[:, 2]) # translate z # 4. uv position map: render position in uv space uv_position_map = mesh.render.render_colors(uv_coords, bfm.full_triangles, position, uv_h, uv_w, c = 3) # 5. save files io.imsave('{}/{}'.format(save_folder, image_name), np.squeeze(cropped_image)) np.save('{}/{}'.format(save_folder, image_name.replace('jpg', 'npy')), uv_position_map) io.imsave('{}/{}'.format(save_folder, image_name.replace('.jpg', '_posmap.jpg')), (uv_position_map)/max(image_h, image_w)) # only for show # --verify # import cv2 # uv_texture_map_rec = cv2.remap(cropped_image, uv_position_map[:,:,:2].astype(np.float32), None, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT,borderValue=(0)) # io.imsave('{}/{}'.format(save_folder, image_name.replace('.jpg', '_tex.jpg')), np.squeeze(uv_texture_map_rec))
这段代码是一个函数,用于将一张人脸图像进行三维重建并生成该人脸在二维图像上的 UV 位置图。具体步骤如下:
1. 加载人脸图像和拟合参数。
2. 生成人脸三维模型,并进行变换,得到变换后的人脸模型顶点位置。
3. 根据人脸关键点进行裁剪,得到人脸区域的图像,并记录变换参数。
4. 在 UV 空间中渲染人脸模型,并生成 UV 位置图。
5. 保存裁剪后的图像和 UV 位置图。
其中,变换参数包括旋转、平移、缩放等。UV 位置图是将人脸模型在 UV 空间中的位置映射到二维图像上的一张纹理图。
import tkinter as tk from tkinter import filedialog from PIL import ImageTk, Image # 创建窗口 window = tk.Tk() window.title("宝石预测") window.geometry("400x400") # 加载模型参数 para_state_dict = paddle.load("MyCNN") model = MyCNN() model.set_state_dict(para_state_dict) model.eval() # 加载标签字典 label_dict = train_parameters['label_dict'] # 创建预测函数 def predict(): # 获取待预测图片路径 img_path = filedialog.askopenfilename() img = Image.open(img_path) # 预处理图片 img = img.resize((224, 224), Image.BILINEAR) img = np.array(img).astype('float32') img = img.transpose((2, 0, 1)) img = img / 255 img = np.array([img]) # 进行预测 img = paddle.to_tensor(img) out = model(img) label = np.argmax(out.numpy()) result = label_dict[str(label)] # 显示预测结果 result_label.config(text="预测结果:{}".format(result)) # 显示待预测图片 img = ImageTk.PhotoImage(Image.open(img_path).resize((200, 200))) img_label.config(image=img) img_label.image = img # 创建选择图片按钮 select_button = tk.Button(window, text="选择图片", command=predict) select_button.pack(pady=20) # 创建待预测图片区域 img_label = tk.Label(window) img_label.pack() # 创建预测结果区域 result_label = tk.Label(window, font=("Helvetica", 16)) result_label.pack(pady=20) # 进入消息循环 window.mainloop()在这段代码的功能中加入使用cv2对选择的图片进行降噪,之后再对上传图片进行识别
好的,你可以使用 OpenCV 库对选择的图片进行降噪,然后将处理后的图片传给预测函数进行识别。下面是修改后的代码:
```
import tkinter as tk
from tkinter import filedialog
from PIL import ImageTk, Image
import cv2
import numpy as np
# 创建窗口
window = tk.Tk()
window.title("宝石预测")
window.geometry("400x400")
# 加载模型参数
para_state_dict = paddle.load("MyCNN")
model = MyCNN()
model.set_state_dict(para_state_dict)
model.eval()
# 加载标签字典
label_dict = train_parameters['label_dict']
# 创建预测函数
def predict():
# 获取待预测图片路径
img_path = filedialog.askopenfilename()
# 降噪处理
img = cv2.imread(img_path)
img = cv2.fastNlMeansDenoisingColored(img, None, 10, 10, 7, 21)
# 预处理图片
img = cv2.resize(img, (224, 224))
img = img.transpose((2, 0, 1))
img = img / 255
img = np.array([img])
# 进行预测
img = paddle.to_tensor(img)
out = model(img)
label = np.argmax(out.numpy())
result = label_dict[str(label)]
# 显示预测结果
result_label.config(text="预测结果:{}".format(result))
# 显示待预测图片
img = ImageTk.PhotoImage(Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)).resize((200, 200)))
img_label.config(image=img)
img_label.image = img
# 创建选择图片按钮
select_button = tk.Button(window, text="选择图片", command=predict)
select_button.pack(pady=20)
# 创建待预测图片区域
img_label = tk.Label(window)
img_label.pack()
# 创建预测结果区域
result_label = tk.Label(window, font=("Helvetica", 16))
result_label.pack(pady=20)
# 进入消息循环
window.mainloop()
```
阅读全文