写一段python代码:使用Douglas-Peucker算法对AIS经纬度轨迹数据进行压缩
时间: 2024-09-27 14:04:16 浏览: 73
好的,以下是使用Python实现Douglas-Peucker算法的一个简化版本,用于压缩二维坐标数据(如AIS经纬度轨迹),假设`points`是一个包含经纬度的二维列表:
```python
import math
def distance(p1, p2):
dx = p1[0] - p2[0]
dy = p1[1] - p2[1]
return math.sqrt(dx**2 + dy**2)
def find_longest_segment(points):
max_dist = 0
start = 0
end = 0
for i in range(1, len(points)):
dist = distance(points[i], points[start])
if dist > max_dist:
max_dist = dist
end = i
return start, end
def Douglas_Peucker(points, epsilon=0.01):
if len(points) <= 2 or epsilon >= distance(points[0], points[-1]):
return points
first_segment = find_longest_segment(points)
sub_path_1 = Douglas_Peucker(points[:first_segment[1]+1], epsilon)
sub_path_2 = Douglas_Peucker(points[first_segment[1]:], epsilon)
return [points[first_segment[0]]] + sub_path_1[:-1] + [sub_path_1[-1]] + [points[-1]]
# 使用示例
compressed_points = Douglas_Peucker([[lat, lon] for lat, lon in your_ais_data])
```
在这个例子中,你需要替换`your_ais_data`为实际的AIS经纬度数据列表。`epsilon`参数控制了保留多少点,值越小会保留更多细节。
阅读全文