轨迹压缩之Douglas-Peucker算法之C++实现
时间: 2024-01-06 08:04:06 浏览: 71
好的,我会回答你的问题。首先,Douglas-Peucker算法是一种轨迹压缩算法,用于将曲线抽象成更简单的形状,而不会影响其总体外观。以下是C++实现:
```cpp
#include <iostream>
#include <vector>
#include <cmath>
using namespace std;
// 定义点结构体
struct Point {
double x, y;
Point(double px, double py) : x(px), y(py) {}
};
// 计算点之间的距离
double distance(const Point& p1, const Point& p2) {
double dx = p1.x - p2.x;
double dy = p1.y - p2.y;
return sqrt(dx*dx + dy*dy);
}
// 计算点到线段的距离
double perpendicular_distance(const Point& p, const Point& l1, const Point& l2) {
double A = p.x - l1.x;
double B = p.y - l1.y;
double C = l2.x - l1.x;
double D = l2.y - l1.y;
double dot = A*C + B*D;
double len_sq = C*C + D*D;
double param = dot / len_sq;
double xx, yy;
if (param < 0) {
xx = l1.x;
yy = l1.y;
}
else if (param > 1) {
xx = l2.x;
yy = l2.y;
}
else {
xx = l1.x + param * C;
yy = l1.y + param * D;
}
double dx = p.x - xx;
double dy = p.y - yy;
return sqrt(dx*dx + dy*dy);
}
// Douglas-Peucker算法
void douglas_peucker(const vector<Point>& points, double epsilon, vector<Point>& simplified) {
int n = points.size();
if (n < 2) return;
double dmax = 0;
int index = 0;
for (int i = 1; i < n-1; ++i) {
double d = perpendicular_distance(points[i], points[0], points[n-1]);
if (d > dmax) {
index = i;
dmax = d;
}
}
if (dmax > epsilon) {
vector<Point> left(points.begin(), points.begin()+index+1);
vector<Point> right(points.begin()+index, points.end());
vector<Point> left_simplified, right_simplified;
douglas_peucker(left, epsilon, left_simplified);
douglas_peucker(right, epsilon, right_simplified);
simplified.insert(simplified.end(), left_simplified.begin(), left_simplified.end()-1);
simplified.insert(simplified.end(), right_simplified.begin(), right_simplified.end());
}
else {
simplified.push_back(points[0]);
simplified.push_back(points[n-1]);
}
}
// 测试
int main() {
vector<Point> points = { Point(0,0), Point(0.5,2), Point(1,1), Point(1.5,2), Point(2,0) };
double epsilon = 0.5;
vector<Point> simplified_points;
douglas_peucker(points, epsilon, simplified_points);
for (auto& p : simplified_points) {
cout << "(" << p.x << "," << p.y << ") ";
}
cout << endl;
return 0;
}
```
以上代码实现了Douglas-Peucker算法,将给定的点集压缩成更简单的点集。
阅读全文