spi_sync和spi_async使用场景
时间: 2024-08-07 11:00:47 浏览: 186
SPI (Serial Peripheral Interface) 是一种常用的全双工通信协议,在微控制器或嵌入式系统中常用于与外部设备如存储器、传感器等进行数据交换。SPI同步模式(spi_sync)和异步模式(spi_async)有各自的使用场景:
**spi_sync (同步模式)**:
- 适合于对传输速度和数据一致性要求较高的场合,因为它需要主机(Master)严格控制传输的时序,比如读取固定长度的数据块或需要精确响应时间的应用。
- 使用时,主机能够直接读取或写入数据,无需额外处理中断,程序流程相对简单。
- 适用于实时性强,不需要立即处理大量数据,而是按部就班操作的情况。
**spi_async (异步模式)**:
- 异步模式常用于对传输速率要求不高但数据量大,或者是需要同时处理其他任务的场景。它允许主机会在完成数据发送或接收后通过中断触发回调函数,实现非阻塞操作。
- 适用于事件驱动型应用,例如物联网节点中,可能同时需要监听多个输入,而SPI通信只是众多任务之一。
- 在处理高并发或者中断密集型任务时,async模式有助于提高系统的响应能力和吞吐量。
相关问题
epoll 字符设备驱动 使用spi通信驱动代码
以下是一个使用 epoll 和 SPI 通信的字符设备驱动代码示例:
```c
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/spi/spi.h>
#include <linux/uaccess.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/wait.h>
#include <linux/cdev.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/irq.h>
#include <linux/gpio.h>
#include <linux/interrupt.h>
#include <linux/poll.h>
#include <linux/slab.h>
#define DRIVER_NAME "my_spi_driver"
#define DEVICE_NAME "my_spi_device"
#define MAX_BUF_LEN 256
static struct spi_device *spi_dev;
static struct cdev my_cdev;
static dev_t my_dev;
static struct class *my_class;
static struct device *my_device;
static char spi_buf[MAX_BUF_LEN];
static int buf_len;
static int irq_gpio = -1;
static volatile int irq_flag = 0;
static struct fasync_struct *async_queue;
static DECLARE_WAIT_QUEUE_HEAD(irq_wait_queue);
static irqreturn_t my_spi_irq_handler(int irq, void *dev_id)
{
irq_flag = 1;
wake_up_interruptible(&irq_wait_queue);
kill_fasync(&async_queue, SIGIO, POLL_IN);
return IRQ_HANDLED;
}
static int my_spi_open(struct inode *inode, struct file *filp)
{
int ret = 0;
printk(KERN_INFO "my_spi: opening device\n");
ret = spi_sync(spi_dev, NULL, 0);
if (ret < 0)
{
printk(KERN_ERR "my_spi: SPI sync failed\n");
return ret;
}
return 0;
}
static int my_spi_release(struct inode *inode, struct file *filp)
{
printk(KERN_INFO "my_spi: closing device\n");
return 0;
}
static ssize_t my_spi_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
{
int ret = 0;
if (count > buf_len)
count = buf_len;
ret = copy_to_user(buf, spi_buf, count);
if (ret < 0)
{
printk(KERN_ERR "my_spi: copy_to_user failed\n");
return ret;
}
return count;
}
static ssize_t my_spi_write(struct file *filp, const char __user *buf, size_t count, loff_t *f_pos)
{
int ret = 0;
if (count > MAX_BUF_LEN)
count = MAX_BUF_LEN;
ret = copy_from_user(spi_buf, buf, count);
if (ret < 0)
{
printk(KERN_ERR "my_spi: copy_from_user failed\n");
return ret;
}
buf_len = count;
return count;
}
static unsigned int my_spi_poll(struct file *filp, poll_table *wait)
{
unsigned int mask = 0;
poll_wait(filp, &irq_wait_queue, wait);
if (irq_flag != 0)
mask |= POLLIN | POLLRDNORM;
return mask;
}
static int my_spi_fasync(int fd, struct file *filp, int mode)
{
return fasync_helper(fd, filp, mode, &async_queue);
}
static struct file_operations my_spi_fops = {
.owner = THIS_MODULE,
.open = my_spi_open,
.release = my_spi_release,
.read = my_spi_read,
.write = my_spi_write,
.poll = my_spi_poll,
.fasync = my_spi_fasync,
};
static int my_spi_probe(struct spi_device *spi)
{
int ret = 0;
printk(KERN_INFO "my_spi: probing device\n");
spi_dev = spi;
ret = gpio_request(spi->irq, "my_spi_irq");
if (ret < 0)
{
printk(KERN_ERR "my_spi: request irq gpio failed\n");
return ret;
}
irq_gpio = spi->irq;
ret = gpio_direction_input(irq_gpio);
if (ret < 0)
{
printk(KERN_ERR "my_spi: set irq gpio direction failed\n");
goto fail;
}
ret = request_irq(gpio_to_irq(irq_gpio), my_spi_irq_handler, IRQF_TRIGGER_RISING, "my_spi_irq_handler", NULL);
if (ret < 0)
{
printk(KERN_ERR "my_spi: request irq failed\n");
goto fail;
}
ret = alloc_chrdev_region(&my_dev, 0, 1, DRIVER_NAME);
if (ret < 0)
{
printk(KERN_ERR "my_spi: alloc_chrdev_region failed\n");
goto fail;
}
cdev_init(&my_cdev, &my_spi_fops);
my_cdev.owner = THIS_MODULE;
ret = cdev_add(&my_cdev, my_dev, 1);
if (ret < 0)
{
printk(KERN_ERR "my_spi: cdev_add failed\n");
goto fail;
}
my_class = class_create(THIS_MODULE, DRIVER_NAME);
if (IS_ERR(my_class))
{
printk(KERN_ERR "my_spi: class_create failed\n");
ret = PTR_ERR(my_class);
goto fail;
}
my_device = device_create(my_class, NULL, my_dev, NULL, DEVICE_NAME);
if (IS_ERR(my_device))
{
printk(KERN_ERR "my_spi: device_create failed\n");
ret = PTR_ERR(my_device);
goto fail;
}
return 0;
fail:
if (irq_gpio != -1)
gpio_free(spi->irq);
return ret;
}
static int my_spi_remove(struct spi_device *spi)
{
printk(KERN_INFO "my_spi: removing device\n");
device_destroy(my_class, my_dev);
class_destroy(my_class);
cdev_del(&my_cdev);
unregister_chrdev_region(my_dev, 1);
free_irq(gpio_to_irq(irq_gpio), NULL);
gpio_free(irq_gpio);
return 0;
}
static struct spi_driver my_spi_driver = {
.driver = {
.name = "my_spi_driver",
.owner = THIS_MODULE,
},
.probe = my_spi_probe,
.remove = my_spi_remove,
};
static int __init my_spi_init(void)
{
int ret = 0;
printk(KERN_INFO "my_spi: initializing driver\n");
ret = spi_register_driver(&my_spi_driver);
if (ret < 0)
{
printk(KERN_ERR "my_spi: spi_register_driver failed\n");
return ret;
}
return 0;
}
static void __exit my_spi_exit(void)
{
printk(KERN_INFO "my_spi: exiting driver\n");
spi_unregister_driver(&my_spi_driver);
}
module_init(my_spi_init);
module_exit(my_spi_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Your Name");
MODULE_DESCRIPTION("My SPI Driver");
```
该驱动程序使用 SPI 通信与外部设备通信,并使用字符设备接口提供用户空间访问。它使用 epoll 和 fasync 机制来实现非阻塞 I/O 和异步通知。它还使用了一个 GPIO 中断来实现异步通知。该驱动程序在初始化时注册了一个 SPI 设备驱动程序,当 SPI 总线上有新设备被探测到时,驱动程序的 probe 函数将被调用。在 probe 函数中,驱动程序会为该设备分配一个字符设备号,并创建一个字符设备文件,以便用户空间程序可以打开和读写该设备。当 SPI 设备从系统中移除时,驱动程序的 remove 函数将被调用,该函数将执行清理操作,以确保系统在设备被移除时不会出现问题。
阅读全文