unet网络搭建代码入门
时间: 2024-10-04 14:01:16 浏览: 28
UNet是一种深度学习网络架构,常用于图像分割任务,尤其是在医学影像分析中。它结合了上采样(upsampling)和下采样(downsampling)结构,以生成具有详细局部信息的特征图。以下是一个简单的Python入门示例,使用Keras库来搭建UNet:
```python
from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, Dropout, UpSampling2D, Concatenate
from tensorflow.keras.models import Model
def conv_block(input_tensor, n_filters, kernel_size=3, activation='relu'):
x = Conv2D(n_filters, kernel_size, padding='same')(input_tensor)
x = Activation(activation)(x)
x = BatchNormalization()(x) # 使用批量归一化加速训练
return x
def unet(input_shape=(512, 512, 3), n_classes=1):
inputs = Input(input_shape)
# 编码部分
encoder = conv_block(inputs, 64)
encoder = conv_block(encoder, 128)
pool1 = MaxPooling2D(pool_size=(2, 2))(encoder)
encoder = conv_block(pool1, 256)
pool2 = MaxPooling2D(pool_size=(2, 2))(encoder)
encoder = conv_block(pool2, 512)
# 解码部分
decoder = UpSampling2D(size=(2, 2))(encoder)
decoder = Concatenate()([decoder, conv_block(pool2, 512, kernel_size=1)])
decoder = conv_block(decoder, 512)
decoder = UpSampling2D(size=(2, 2))(decoder)
decoder = Concatenate()([decoder, conv_block(pool1, 256, kernel_size=1)])
decoder = conv_block(decoder, 256)
# 输出层
output = Conv2D(n_classes, 1, activation='softmax')(decoder)
model = Model(inputs=inputs, outputs=output)
return model
# 创建并编译模型
model = unet()
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
```
在这个例子中,`unet`函数返回了一个完整的UNet模型,你可以调整输入形状、滤波器数量等参数以适应你的需求。
阅读全文