卷积神经网络MATLAB代码
时间: 2024-10-30 15:04:15 浏览: 29
卷积神经网络(Convolutional Neural Network, CNN)是一种深度学习模型,常用于图像处理和计算机视觉任务,因为它们能够提取局部特征并保留空间结构信息。在MATLAB中,可以使用Deep Learning Toolbox来构建CNN。
以下是一个简单的例子,展示了如何创建一个基本的卷积层、池化层以及全连接层,并训练一个小的LeNet-5风格的网络:
```matlab
% 导入所需库
import deepLearning.*
import layers.*
% 创建卷积层
convLayer = layer('Convolution2D', 'FilterSize', [3, 3], 'NumFilters', 6, 'Padding', 'same');
% 创建最大池化层
poolLayer = layer('MaxPooling2D', 'PoolSize', [2, 2]);
% 创建全连接层
fcLayer = layer('FullyConnected', 'NumUnits', 120);
softmaxLayer = layer('Softmax');
% 将所有层连接起来
layers = [
convLayer
poolLayer
fcLayer
softmaxLayer
];
% 加载数据集
imdsTrain = imageDatastore('your_data_directory', ...
'IncludeSubfolders', true, 'LabelSource', 'foldernames');
% 定义网络架构和损失函数
options = trainingOptions('sgdm', ...
'MiniBatchSize', 10, ... % 可调整这个值
'MaxEpochs', 10, ...
'Plots', 'training-progress');
% 训练网络
net = trainNetwork(imdsTrain, layers, options);
阅读全文
相关推荐


















