基于pytorch,编写一段WGAN的代码,该WGAN用来生成时序数据,并用中文注释
时间: 2024-04-13 09:29:20 浏览: 159
当然可以!以下是一个用PyTorch编写的简单WGAN代码示例,用于生成时序数据。
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import grad
from torch.utils.data import DataLoader
# 生成器模型
class Generator(nn.Module):
def __init__(self, input_dim, output_dim):
super(Generator, self).__init__()
self.fc = nn.Linear(input_dim, 128)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(128, output_dim)
def forward(self, x):
x = self.fc(x)
x = self.relu(x)
x = self.fc2(x)
return x
# 判别器模型
class Critic(nn.Module):
def __init__(self, input_dim):
super(Critic, self).__init__()
self.fc = nn.Linear(input_dim, 128)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(128, 1)
def forward(self, x):
x = self.fc(x)
x = self.relu(x)
x = self.fc2(x)
return x
# WGAN 训练器
class WGAN:
def __init__(self, input_dim, output_dim, critic_iterations=5, batch_size=64, learning_rate=0.0001):
self.generator = Generator(input_dim, output_dim)
self.critic = Critic(output_dim)
self.critic_iterations = critic_iterations
self.batch_size = batch_size
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.generator.to(self.device)
self.critic.to(self.device)
self.generator_optimizer = optim.RMSprop(self.generator.parameters(), lr=learning_rate)
self.critic_optimizer = optim.RMSprop(self.critic.parameters(), lr=learning_rate)
def train(self, data_loader, num_epochs):
for epoch in range(num_epochs):
for i, real_data in enumerate(data_loader):
real_data = real_data.to(self.device)
# 判别器训练
for _ in range(self.critic_iterations):
self.critic_optimizer.zero_grad()
noise = torch.randn(self.batch_size, input_dim).to(self.device)
fake_data = self.generator(noise)
critic_loss = self.critic(fake_data).mean() - self.critic(real_data).mean()
critic_loss.backward()
self.critic_optimizer.step()
# 限制判别器权重
for p in self.critic.parameters():
p.data.clamp_(-0.01, 0.01)
# 生成器训练
self.generator_optimizer.zero_grad()
noise = torch.randn(self.batch_size, input_dim).to(self.device)
fake_data = self.generator(noise)
generator_loss = -self.critic(fake_data).mean()
generator_loss.backward()
self.generator_optimizer.step()
# 打印损失
if i % 100 == 0:
print("[Epoch %d/%d] [Batch %d/%d] Critic Loss: %.4f Generator Loss: %.4f" %
(epoch, num_epochs, i, len(data_loader), critic_loss.item(), generator_loss.item()))
# 使用示例
input_dim = 100
output_dim = 1
# 加载数据集并创建 DataLoader
dataset = ...
data_loader = DataLoader(dataset, batch_size=64, shuffle=True)
wgan = WGAN(input_dim, output_dim)
wgan.train(data_loader, num_epochs=10)
```
请确保根据你的具体任务进行适当的修改和调整,特别是在数据加载和预处理部分。此外,确保使用适当的损失函数和优化器进行训练。
阅读全文