NMI归一化互信息MATLAB实现
时间: 2023-12-23 12:26:00 浏览: 354
根据提供的引用内容,我们可以了解到NMI(Normalized Mutual Information)是一种用于评估聚类算法性能的指标,MATLAB中可以使用`nmi`函数来计算NMI值。下面是一个NMI归一化互信息MATLAB实现的例子:
```matlab
% 假设有两个聚类结果
C1 = [1 1 2 2 3 3];
C2 = [1 1 22 2 3];
% 计算NMI值
nmi_value = nmi(C1, C2);
% 输出结果
disp(['NMI value: ', num2str(nmi_value)]);
```
在上面的例子中,我们假设有两个聚类结果`C1`和`C2`,并使用`nmi`函数计算它们之间的NMI值。最后,我们使用`disp`函数输出NMI值。
相关问题
归一化互信息MATLAB代码
### 归一化互信息的MATLAB实现
归一化互信息(Normalized Mutual Information, NMI)是一种衡量两个变量之间依赖性的度量方法。NMI 值范围在0到1之间,其中1表示完全相关,而0则意味着独立。
下面是一个用于计算归一化互信息的MATLAB代码示例:
```matlab
function nmi = normalizedMutualInformation(x, y)
% 计算联合概率分布矩阵 p_xy 和边缘概率分布向量 px py
[px, ~] = histcounts(x, 'Normalization', 'probability');
[~, py] = histcounts(y, 'Normalization', 'probability');
numBinsX = length(px);
numBinsY = length(py);
p_xy = zeros(numBinsX, numBinsY);
for i = 1:numBinsX
for j = 1:numBinsY
p_xy(i,j) = sum((x == find(px==max(px),1)) & (y == find(py==max(py),1))) / numel(x);
end
end
% 防止除零错误
epsilon = finfo('double').eps;
% 计算熵 H(X),H(Y) 及其联合熵 H(X,Y)
hx = -sum(px .* log(px + epsilon));
hy = -sum(py .* log(py + epsilon));
hxy = -sum(p_xy .* log(p_xy + epsilon),'all');
% 计算互信息 I(X; Y)
mi = hx + hy - hxy;
% 计算归一化互信息 NMI
nmi = mi / sqrt(hx * hy);
end
```
此函数接受两个输入参数 `x` 和 `y` ,它们代表要比较的数据集或特征向量。该算法首先估计这些数据的概率密度函数,并基于此来评估各自的熵值以及共同发生的可能性。最后通过公式得出最终的结果[^1]。
nmi聚类归一化互信息
NMI(Normalized Mutual Information)是一种用于衡量聚类结果相似度的评价指标。它结合了信息熵和互信息的概念,可以用来衡量两个聚类结果之间的相似程度。NMI的计算公式可以表示为互信息除以聚类结果熵的最大值,从而将其标准化。
在Python中,可以使用sklearn库的metrics模块来计算NMI。具体步骤是导入相应的模块(from sklearn import metrics),然后提供两个聚类结果的标签(比如A和B),最后调用normalized_mutual_info_score函数计算NMI的值。
下面是一个示例代码:
```python
from sklearn import metrics
A = [1, 1, 1, 2, 3, 3]
B = [1, 2, 3, 1, 2, 3]
result_NMI = metrics.normalized_mutual_info_score(A, B)
print("result_NMI:", result_NMI)
```
以上代码会输出NMI的值,其中A和B是两个聚类结果的标签。你可以根据实际的聚类结果替换A和B的值,从而计算得到相应的NMI。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *3* [聚类的评价指标NMI标准化互信息+python实现+sklearn调库](https://blog.csdn.net/weixin_42764932/article/details/114384803)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
- *2* [互信息计算matlab代码-adjusted_mutual_information:R代码,用于在聚类之间快速且并行地计算调整后的互信息](https://download.csdn.net/download/weixin_38522214/19144881)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文
相关推荐













