利用huggingface调用VIT
时间: 2023-10-01 12:04:24 浏览: 123
使用Hugging Face库调用Vision Transformer (ViT)模型可以分为以下几个步骤:
1. 安装必要的库和依赖项:
```python
!pip install torch
!pip install torchvision
!pip install transformers
```
2. 导入所需的库:
```python
from PIL import Image
import requests
import torch
from torchvision.transforms import ToTensor
from transformers import ViTFeatureExtractor, ViTForImageClassification
```
3. 加载预训练的ViT模型和特征提取器:
```python
model_name = 'google/vit-base-patch16-224-in21k'
feature_extractor = ViTFeatureExtractor.from_pretrained(model_name)
model = ViTForImageClassification.from_pretrained(model_name)
```
4. 定义图像预处理函数:
```python
def preprocess_image(image):
image = ToTensor()(image).unsqueeze(0)
inputs = feature_extractor(images=image, return_tensors='pt')
return inputs
```
5. 加载图像并进行预测:
```python
image_url = 'URL_OF_YOUR_IMAGE'
image = Image.open(requests.get(image_url, stream=True).raw)
inputs = preprocess_image(image)
outputs = model(**inputs)
predictions = torch.argmax(outputs.logits, dim=1)
```
请确保将 "URL_OF_YOUR_IMAGE" 替换为您要预测的图像的实际URL。
这样,您就可以使用Hugging Face的transformers库调用Vision Transformer模型。
阅读全文