matlab构建决策树代码
时间: 2023-08-23 16:07:22 浏览: 109
决策树MATLAB代码
以下是一个简单的MATLAB代码示例,用于构建决策树模型:
```matlab
% 假设训练数据保存在一个名为data的m×n矩阵中,其中m是样本数,n是特征数
% 假设标签保存在一个名为labels的m维向量中,表示每个样本的类别
% 创建决策树模型
tree = fitctree(data, labels);
% 可选:设置决策树模型的参数
% tree = fitctree(data, labels, 'MaxNumSplits', 10); % 设置最大分裂次数为10
% 可选:使用交叉验证选择最优参数
% t = templateTree('MaxNumSplits', 'all'); % 创建一个模板
% tree = fitcecoc(data, labels, 'Learners', t, 'CrossVal', 'on'); % 使用交叉验证选择最优参数
% 可选:绘制决策树图形
view(tree, 'Mode', 'graph');
% 使用训练好的决策树模型进行预测
% 假设测试数据保存在一个名为testData的p×n矩阵中,其中p是测试样本数,n是特征数
predictions = predict(tree, testData);
```
这是一个简单的示例,你可以根据具体需求进行参数设置和调整。注意,训练数据和测试数据的特征数必须一致,否则会导致错误。
阅读全文