cyclegan马变斑马代码
时间: 2024-12-31 10:46:18 浏览: 18
### 使用 PyTorch 实现 CycleGAN 马到斑马图像转换
为了实现从马到斑马的图像转换,可以采用基于 PyTorch 的 CycleGAN 模型。以下是完整的代码实现:
#### 1. 导入必要的库
```python
import torch
from torchvision import transforms, datasets
from torch.utils.data import DataLoader
import itertools
import os
from PIL import Image
```
#### 2. 定义数据加载器
```python
class ImageDataset(torch.utils.data.Dataset):
def __init__(self, root, transform=None, mode='train'):
self.transform = transform
self.files_A = sorted(os.listdir(os.path.join(root, 'A')))
self.files_B = sorted(os.listdir(os.path.join(root, 'B')))
def __getitem__(self, index):
item_A = self.transform(Image.open(self.files_A[index % len(self.files_A)]))
item_B = self.transform(Image.open(self.files_B[index % len(self.files_B)]))
if self.mode == 'test':
return {'A': item_A, 'B': item_B}
else:
return {'A': item_A, 'B': item_B}
def __len__(self):
return max(len(self.files_A), len(self.files_B))
```
#### 3. 构建网络结构
```python
import torch.nn as nn
class Generator(nn.Module):
def __init__(self, input_nc=3, output_nc=3, n_residual_blocks=9):
super(Generator, self).__init__()
model = [nn.ReflectionPad2d(3),
nn.Conv2d(input_nc, 64, kernel_size=7, padding=0, bias=True),
nn.InstanceNorm2d(64),
nn.ReLU(True)]
# 下采样
in_features = 64
out_features = in_features * 2
for _ in range(2):
model += [nn.Conv2d(in_features, out_features, kernel_size=3, stride=2, padding=1, bias=True),
nn.InstanceNorm2d(out_features),
nn.ReLU(True)]
in_features = out_features
out_features = in_features * 2
# ResNet 块
for _ in range(n_residual_blocks):
model += [ResidualBlock(in_features)]
# 上采样
out_features = in_features // 2
for _ in range(2):
model += [nn.ConvTranspose2d(in_features, out_features, kernel_size=3, stride=2, padding=1, output_padding=1,
bias=True),
nn.InstanceNorm2d(out_features),
nn.ReLU(True)]
in_features = out_features
out_features = in_features // 2
# 输出层
model += [nn.ReflectionPad2d(3),
nn.Conv2d(64, output_nc, kernel_size=7, padding=0),
nn.Tanh()]
self.model = nn.Sequential(*model)
def forward(self, x):
return self.model(x)
class Discriminator(nn.Module):
def __init__(self, input_nc=3):
super(Discriminator, self).__init__()
model = [
nn.Conv2d(input_nc, 64, kernel_size=4, stride=2, padding=1),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1),
nn.InstanceNorm2d(128),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1),
nn.InstanceNorm2d(256),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(256, 512, kernel_size=4, padding=1),
nn.InstanceNorm2d(512),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(512, 1, kernel_size=4, padding=1)
]
self.model = nn.Sequential(*model)
def forward(self, x):
x = self.model(x)
return x
```
#### 4. 训练过程
```python
def train(dataloader, G_AB, G_BA, D_A, D_B, criterion_GAN, criterion_cycle, optimizer_G, optimizer_D_A, optimizer_D_B):
for epoch in range(num_epochs):
for i, batch in enumerate(dataloader):
real_A = batch['A'].to(device)
real_B = batch['B'].to(device)
valid = torch.ones((real_A.size(0), *D_A.output_shape)).to(device)
fake = torch.zeros((real_A.size(0), *D_A.output_shape)).to(device)
###### Generators A2B and B2A ######
optimizer_G.zero_grad()
# Identity loss
same_B = G_AB(real_B)
loss_identity_B = criterion_cycle(same_B, real_B)
same_A = G_BA(real_A)
loss_identity_A = criterion_cycle(same_A, real_A)
# GAN loss
fake_B = G_AB(real_A)
pred_fake = D_B(fake_B)
loss_GAN_A2B = criterion_GAN(pred_fake, valid)
fake_A = G_BA(real_B)
pred_fake = D_A(fake_A)
loss_GAN_B2A = criterion_GAN(pred_fake, valid)
# Cycle loss
recovered_A = G_BA(fake_B)
loss_cycle_ABA = criterion_cycle(recovered_A, real_A)
recovered_B = G_AB(fake_A)
loss_cycle_BAB = criterion_cycle(recovered_B, real_B)
# Total loss
loss_G = (loss_identity_A + loss_identity_B +
lambda_cyc * (loss_cycle_ABA + loss_cycle_BAB) +
lambda_adv * (loss_GAN_A2B + loss_GAN_B2A))
loss_G.backward()
optimizer_G.step()
###### Discriminator A ######
optimizer_D_A.zero_grad()
# Real loss
pred_real = D_A(real_A)
loss_real = criterion_GAN(pred_real, valid)
# Fake loss (on batch of previously generated samples)
fake_A_ = fake_A_buffer.push_and_pop(fake_A)
pred_fake = D_A(fake_A_.detach())
loss_fake = criterion_GAN(pred_fake, fake)
# Total loss
loss_D_A = (loss_real + loss_fake) / 2
loss_D_A.backward()
optimizer_D_A.step()
###### Discriminator B ######
optimizer_D_B.zero_grad()
# Real loss
pred_real = D_B(real_B)
loss_real = criterion_GAN(pred_real, valid)
# Fake loss (on batch
阅读全文