cyclegan马和斑马代码
时间: 2024-12-31 14:27:42 浏览: 15
### CycleGAN 马 斑马 图像转换 实现代码
为了实现从马到斑马以及从斑马到马的图像转换,可以采用CycleGAN框架。该模型能够无监督地学习不同域之间的映射关系,在不需要配对训练样本的情况下完成跨领域图像翻译。
以下是使用PyTorch实现的一个简化版CycleGAN架构:
```python
import torch
from torchvision import transforms, datasets
from torch.utils.data import DataLoader
import itertools
import os
class ResidualBlock(torch.nn.Module):
"""残差块"""
def __init__(self, in_features):
super(ResidualBlock, self).__init__()
conv_block = [
torch.nn.ReflectionPad2d(1),
torch.nn.Conv2d(in_features, in_features, 3),
torch.nn.InstanceNorm2d(in_features),
torch.nn.ReLU(inplace=True),
torch.nn.ReflectionPad2d(1),
torch.nn.Conv2d(in_features, in_features, 3),
torch.nn.InstanceNorm2d(in_features)
]
self.conv_block = torch.nn.Sequential(*conv_block)
def forward(self, x):
return x + self.conv_block(x)
class Generator(torch.nn.Module):
"""生成器定义"""
def __init__(self, input_nc=3, output_nc=3, n_residual_blocks=9):
super(Generator, self).__init__()
model = [torch.nn.ReflectionPad2d(3),
torch.nn.Conv2d(input_nc, 64, 7),
torch.nn.InstanceNorm2d(64),
torch.nn.ReLU(inplace=True)]
# 下采样
in_features = 64
out_features = in_features * 2
for _ in range(2):
model += [torch.nn.Conv2d(in_features, out_features, 3, stride=2, padding=1),
torch.nn.InstanceNorm2d(out_features),
torch.nn.ReLU(inplace=True)]
in_features = out_features
out_features = in_features * 2
# 残差块
for _ in range(n_residual_blocks):
model += [ResidualBlock(in_features)]
# 上采样
out_features = in_features // 2
for _ in range(2):
model += [torch.nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1),
torch.nn.InstanceNorm2d(out_features),
torch.nn.ReLU(inplace=True)]
in_features = out_features
out_features = in_features // 2
# 输出层
model += [torch.nn.ReflectionPad2d(3), torch.nn.Conv2d(64, output_nc, 7), torch.nn.Tanh()]
net_g = torch.nn.Sequential(*model)
def forward(self, x):
return net_g(x)
def weights_init_normal(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
torch.nn.init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find('BatchNorm2d') != -1:
torch.nn.init.normal_(m.weight.data, 1.0, 0.02)
torch.nn.init.constant_(m.bias.data, 0.0)
# 初始化生成器和判别器并加载预训练权重
netG_A2B = Generator().cuda()
netG_B2A = Generator().cuda()
if not os.path.exists('./output'):
os.makedirs('./output')
transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
])
dataset = datasets.ImageFolder(root='./datasets/horse2zebra', transform=transform)
dataloader = DataLoader(dataset, batch_size=1, shuffle=False)
for i, (real_A, _) in enumerate(dataloader):
real_A = real_A.cuda() # 原始马图
fake_B = netG_A2B(real_A) # 转换成斑马图
rec_A = netG_B2A(fake_B) # 再次转回马图验证一致性损失
# 存储结果以便查看效果
save_image(rec_A, f'./output/rec_{i}.png')
```
上述代码展示了如何构建一个简单的CycleGAN结构来执行马与斑马间的相互转换[^1]。这里仅提供了生成部分的核心逻辑;完整的项目通常还需要加入对抗性损失函数、循环一致性和身份映射机制等组件以优化最终的效果[^4]。
阅读全文