使用vit模型使用Grad-CAM的代码
时间: 2024-04-16 14:26:35 浏览: 172
keras-grad-cam:带有keras的Grad-CAM的实现
4星 · 用户满意度95%
当使用ViT(Vision Transformer)模型时,您可以使用以下代码来实现Grad-CAM:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
class ViTGradCAM:
def __init__(self, model):
self.model = model
self.feature_maps = None
self.gradient = None
def save_feature_maps(self, module, input, output):
self.feature_maps = output.detach()
def save_gradient(self, grad):
self.gradient = grad[0].detach()
def register_hooks(self):
target_layer = self.model.blocks[-1] # 修改为您希望可视化的目标层
target_layer.register_forward_hook(self.save_feature_maps)
target_layer.register_backward_hook(self.save_gradient)
def generate_heatmap(self, input_image, target_class=None):
self.model.zero_grad()
output = self.model(input_image)
if target_class is None:
target_class = torch.argmax(output)
output[0, target_class].backward()
weights = F.adaptive_avg_pool2d(self.gradient, 1)
heatmap = torch.mul(self.feature_maps, weights).sum(dim=1, keepdim=True)
heatmap = F.relu(heatmap)
heatmap /= torch.max(heatmap)
***
阅读全文