def get_features(self, output_list): fea_list_src, fea_list_tar = [], [] for fea in output_list: fea_list_src.append(fea[0: fea.size(0) // 2]) fea_list_tar.append(fea[fea.size(0) // 2:]) return fea_list_src, fea_list_tar
时间: 2024-04-12 14:33:15 浏览: 130
这是一个用于从输出列表中提取特征的函数。函数接受一个输出列表作为输入,并将其划分为源特征列表和目标特征列表。
函数首先创建两个空列表fea_list_src和fea_list_tar,用于存储源特征和目标特征。
接下来,函数使用循环遍历输出列表中的每个特征。对于每个特征,函数会将其前半部分添加到fea_list_src中,将其后半部分添加到fea_list_tar中。
最后,函数返回划分后的源特征列表fea_list_src和目标特征列表fea_list_tar作为结果。
相关问题
#定义一个get_fea类函数,返回类变量x0 def get_fea_x0(self): return self.fea_x0 def get_fea_x1(self): return self.fea_x1 def get_fea_x2(self): return self.fea_x2 def get_fea_x3(self): return self.fea_x3 卷积神经网络已建立,利用上述代码,在此基础上修改出pytorch框架下调用指定层的tsne 中文回答 2023/5/26 11:07:08
感谢您提供的更多上下文信息。要在PyTorch框架下调用指定层的TSNE,需要进行以下步骤:
1. 首先,您需要使用PyTorch构建卷积神经网络,并将其训练。在训练过程中,您需要将不同层的特征提取出来,并保存到一个列表中。
2. 接下来,您可以使用scikit-learn中的TSNE类来实现降维。您需要将保存的特征列表作为输入,调用fit_transform函数来获得降维后的特征表示。
3. 最后,您可以使用Matplotlib等库可视化降维后的特征表示。
下面是一个示例代码,您可以根据您的具体需求进行修改和调整:
```python
import torch
import numpy as np
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
# 定义卷积神经网络
class CNN(torch.nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = torch.nn.Conv2d(3, 32, 3, padding=1)
self.conv2 = torch.nn.Conv2d(32, 64, 3, padding=1)
self.conv3 = torch.nn.Conv2d(64, 128, 3, padding=1)
self.fc1 = torch.nn.Linear(128 * 8 * 8, 512)
self.fc2 = torch.nn.Linear(512, 10)
def forward(self, x):
x = torch.nn.functional.relu(self.conv1(x))
x = torch.nn.functional.max_pool2d(x, 2)
x = torch.nn.functional.relu(self.conv2(x))
x = torch.nn.functional.max_pool2d(x, 2)
x = torch.nn.functional.relu(self.conv3(x))
x = torch.nn.functional.max_pool2d(x, 2)
x = x.view(-1, 128 * 8 * 8)
x = torch.nn.functional.relu(self.fc1(x))
x = self.fc2(x)
return x
# 定义一个函数,用于获取指定层的特征
def get_feature_maps(model, x, layer_num):
feature_maps = []
for i in range(layer_num):
x = model[i](x)
feature_maps.append(x)
return feature_maps
# 加载数据集
train_loader = torch.utils.data.DataLoader(
torchvision.datasets.CIFAR10(
root='./data', train=True, download=True,
transform=torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(
(0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])),
batch_size=32, shuffle=True)
# 实例化卷积神经网络
model = CNN()
# 训练卷积神经网络
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
for epoch in range(10):
for i, (inputs, labels) in enumerate(train_loader):
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# 获取指定层的特征
layer_num = 3
inputs, labels = next(iter(train_loader))
feature_maps = get_feature_maps(model, inputs, layer_num)
# 转换特征为numpy数组
feature_maps_np = [fm.detach().numpy() for fm in feature_maps]
# 将特征转换为二维数组
feature_maps_np_2d = [fm.reshape(fm.shape[0], -1) for fm in feature_maps_np]
# 使用TSNE降维
tsne = TSNE(n_components=2, random_state=0)
feature_maps_tsne = [tsne.fit_transform(fm) for fm in feature_maps_np_2d]
# 可视化降维后的特征
for i in range(layer_num):
plt.figure()
plt.scatter(feature_maps_tsne[i][:, 0], feature_maps_tsne[i][:, 1], c=labels)
plt.title('Layer {}'.format(i+1))
plt.show()
```
这个示例代码演示了如何在PyTorch框架下调用指定层的TSNE,您可以根据您的具体需求进行修改和调整。
逐行解释代码: def forward_Boosting(self, x, weight_mat=None): out = self.gru_features(x) fea = out[0] if self.use_bottleneck: fea_bottleneck = self.bottleneck(fea[:, -1, :]) fc_out = self.fc(fea_bottleneck).squeeze() else: fc_out = self.fc_out(fea[:, -1, :]).squeeze() out_list_all = out[1] out_list_s, out_list_t = self.get_features(out_list_all) loss_transfer = torch.zeros((1,)).cuda() if weight_mat is None: weight = (1.0 / self.len_seq * torch.ones(self.num_layers, self.len_seq)).cuda() else: weight = weight_mat dist_mat = torch.zeros(self.num_layers, self.len_seq).cuda() for i in range(len(out_list_s)): criterion_transder = TransferLoss( loss_type=self.trans_loss, input_dim=out_list_s[i].shape[2]) for j in range(self.len_seq): loss_trans = criterion_transder.compute( out_list_s[i][:, j, :], out_list_t[i][:, j, :]) loss_transfer = loss_transfer + weight[i, j] * loss_trans dist_mat[i, j] = loss_trans return fc_out, loss_transfer, dist_mat, weight
逐行解释这段代码:
1. `def forward_Boosting(self, x, weight_mat=None):`:这是一个方法定义,接受输入张量`x`和权重矩阵`weight_mat`(可选参数)作为输入。
2. `out = self.gru_features(x)`:将输入张量`x`传递给`self.gru_features`方法进行特征提取,得到一个包含特征张量和其他信息的元组`out`。
3. `fea = out[0]`:从元组`out`中获取特征张量,赋值给变量`fea`。
4. `if self.use_bottleneck:`:如果模型使用了瓶颈层(`self.use_bottleneck=True`),则执行以下代码块:
- `fea_bottleneck = self.bottleneck(fea[:, -1, :])`:将`fea[:, -1, :]`传递给瓶颈层`self.bottleneck`进行处理,得到瓶颈层的输出张量,赋值给变量`fea_bottleneck`。
- `fc_out = self.fc(fea_bottleneck).squeeze()`:将瓶颈层的输出张量传递给全连接层`self.fc`进行处理,得到最终的输出张量`fc_out`。使用`squeeze()`方法将张量中的维度为1的维度去除。
5. `else:`:如果没有使用瓶颈层,则执行以下代码块:
- `fc_out = self.fc_out(fea[:, -1, :]).squeeze()`:将`fea[:, -1, :]`传递给输出层`self.fc_out`进行处理,得到最终的输出张量`fc_out`。同样,使用`squeeze()`方法将张量中的维度为1的维度去除。
6. `out_list_all = out[1]`:从元组`out`中获取其他信息,赋值给变量`out_list_all`。
7. `out_list_s, out_list_t = self.get_features(out_list_all)`:调用`self.get_features`方法将`out_list_all`划分为两个特征列表`out_list_s`和`out_list_t`。
8. `loss_transfer = torch.zeros((1,)).cuda()`:创建一个大小为`(1,)`的零张量,并将其移动到GPU上进行计算,用于存储损失值`loss_transfer`。
9. `if weight_mat is None:`:如果权重矩阵`weight_mat`为`None`,则执行以下代码块:
- `weight = (1.0 / self.len_seq * torch.ones(self.num_layers, self.len_seq)).cuda()`:创建一个大小为`(self.num_layers, self.len_seq)`的张量,每个元素初始化为`(1.0 / self.len_seq)`,并将其移动到GPU上进行计算,赋值给变量`weight`。用于存储权重值。
10. `else:`:如果权重矩阵`weight_mat`不为`None`,则执行以下代码块:
- `weight = weight_mat`:将输入的权重矩阵`weight_mat`赋值给变量`weight`。
11. `dist_mat = torch.zeros(self.num_layers, self.len_seq).cuda()`:创建一个大小为`(self.num_layers, self.len_seq)`的零张量,并将其移动到GPU上进行计算,用于存储距离矩阵`dist_mat`。
12. `for i in range(len(out_list_s)):`:对特征列表`out_list_s`进行迭代,循环变量为`i`。
- `criterion_transder = TransferLoss(loss_type=self.trans_loss, input_dim=out_list_s[i].shape[2])`:根据损失类型和特征维度创建一个TransferLoss的实例,赋值给变量`criterion_transder`。
- `for j in range(self.len_seq):`:对时间步进行迭代,循环变量为`j`。
- `loss_trans = criterion_transder.compute(out_list_s[i][:, j, :], out_list_t[i][:, j, :])`:计算TransferLoss损失值,传入当前时间步的特征张量`out_list_s[i][:, j, :]`和目标特征张量`out_list_t[i][:, j, :]`,并将计算得到的损失值赋值给变量`loss_trans`。
- `loss_transfer = loss_transfer + weight[i, j] * loss_trans`:根据权重值将损失值加权累加到总损失值`loss_transfer`中。
- `dist_mat[i, j] = loss_trans`:将损失值存储到距离矩阵`dist_mat`的对应位置上。
13. `return fc_out, loss_transfer, dist_mat, weight`:返回最终的输出张量`fc_out`、损失值`loss_transfer`、距离矩阵`dist_mat`和权重矩阵`weight`作为结果。
阅读全文