std::vector<cv::Mat> heatmaps_channels(heatmaps.size[1] - 1);这行代码什么意思

时间: 2024-01-22 12:01:48 浏览: 79
这行代码创建了一个名为 `heatmaps_channels` 的 `std::vector`,其大小为 `heatmaps.size[1] - 1`。在这个上下文中,`heatmaps` 是一个多维数组(可能是 `cv::Mat` 类型的),`.size[1]` 返回了该数组的第二个维度的大小。 因此,`heatmaps_channels` 是一个具有 `heatmaps.size[1] - 1` 个元素的向量。每个元素都是 `cv::Mat` 类型的对象,用于存储热力图通道的数据。
相关问题

for(int i = 0; i < heatmaps.size[1] - 1; i ++) // resize cost 29 ms { cv::Mat heatMap(heatmaps.size[2], heatmaps.size[3], CV_32F, reinterpret_cast<float*>(const_cast<uchar*>(heatmaps.ptr(0, i)))); // heatMap.data = heatmaps.ptr(0, i); if (this->upsample_ratio != 1) { // cv::resize(heatMap, heatMap, cv::Size(0, 0), this->upsample_ratio, this->upsample_ratio, cv::INTER_CUBIC); // cv::resize(heatMap, heatMap, cv::Size(0, 0), this->upsample_ratio, this->upsample_ratio, cv::INTER_AREA); cv::resize(heatMap, heatMap, cv::Size(0, 0), this->upsample_ratio, this->upsample_ratio, cv::INTER_LINEAR); } heatmaps_channels[i] = heatMap; } 这段C++代码的详细解释

这段C++代码是一个for循环,用于对一个名为`heatmaps`的多维数组进行处理。下面是代码的详细解释: 1. `for(int i = 0; i < heatmaps.size[1] - 1; i++)`: 这是一个循环,从0开始迭代到`heatmaps`数组的第一维度大小减1。`heatmaps.size[1]`表示数组的第一维度大小。 2. `cv::Mat heatMap(heatmaps.size[2], heatmaps.size[3], CV_32F, reinterpret_cast<float*>(const_cast<uchar*>(heatmaps.ptr(0, i))));`: 这行代码定义了一个名为`heatMap`的`cv::Mat`对象。它使用了`heatmaps`数组中的数据来初始化,具体是通过`heatmaps.ptr(0, i)`获取指向数组中特定位置的指针,然后使用`reinterpret_cast<float*>`将指针转换为`float*`类型,最后通过`cv::Mat`构造函数创建一个`CV_32F`类型的矩阵。 3. `if (this->upsample_ratio != 1)`: 这是一个条件判断语句,检查变量`this->upsample_ratio`是否不等于1。 4. `cv::resize(heatMap, heatMap, cv::Size(0, 0), this->upsample_ratio, this->upsample_ratio, cv::INTER_LINEAR);`: 这行代码使用了OpenCV的resize函数对矩阵`heatMap`进行调整大小操作。调整大小的目标大小由`cv::Size(0, 0)`表示,表示将根据输入的`this->upsample_ratio`参数对图像进行放大或缩小。`cv::INTER_LINEAR`是插值方法,表示使用线性插值算法进行调整大小操作。 5. `heatmaps_channels[i] = heatMap;`: 这行代码将处理后的矩阵`heatMap`赋值给名为`heatmaps_channels`的数组的第`i`个元素。 这段代码的作用是遍历`heatmaps`数组的第一维度,并对每个元素进行调整大小操作,然后将调整后的结果存储在名为`heatmaps_channels`的数组中。

def gen_label_heatmap(self, label): label = torch.Tensor(label) grid = torch.zeros((self.label_size, self.label_size, 2)) # size:(46,46,2) grid[..., 0] = torch.Tensor(range(self.label_size)).unsqueeze(0) grid[..., 1] = torch.Tensor(range(self.label_size)).unsqueeze(1) grid = grid.unsqueeze(0) labels = label.unsqueeze(-2).unsqueeze(-2) exponent = torch.sum((grid - labels)**2, dim=-1) # size:(21,46,46) heatmaps = torch.exp(-exponent / 2.0 / self.sigma / self.sigma) return heatmaps

这段代码的功能是生成一个标签热力图,输入参数为标签。首先将标签转换成PyTorch张量格式,然后创建一个尺寸为self.label_size x self.label_size x 2的全零张量作为网格。

相关推荐

C:\Users\TXN>CD C:// C:\>Python "C:\Program Files (x86)\Intel\openvino_2021.4.752\deployment_tools\open_model_zoo\demos\human_pose_estimation_demo\python\human_pose_estimation_demo.py" -at openpose -d CPU -i 0 -m D:\model\fall_detection_zpp\intel\human-pose-estimation-0001\FP16\human-pose-estimation-0001.xml [ INFO ] Initializing Inference Engine... [ INFO ] Loading network... [ INFO ] Reading network from IR... Traceback (most recent call last): File "C:\Program Files (x86)\Intel\openvino_2021.4.752\deployment_tools\open_model_zoo\demos\human_pose_estimation_demo\python\human_pose_estimation_demo.py", line 283, in <module> sys.exit(main() or 0) File "C:\Program Files (x86)\Intel\openvino_2021.4.752\deployment_tools\open_model_zoo\demos\human_pose_estimation_demo\python\human_pose_estimation_demo.py", line 184, in main model = get_model(ie, args, frame.shape[1] / frame.shape[0]) File "C:\Program Files (x86)\Intel\openvino_2021.4.752\deployment_tools\open_model_zoo\demos\human_pose_estimation_demo\python\human_pose_estimation_demo.py", line 111, in get_model prob_threshold=args.prob_threshold) File "C:\Program Files (x86)\Intel\openvino_2021.4.752\deployment_tools\open_model_zoo\demos\common\python\models\open_pose.py", line 62, in __init__ strides=(1, 1), name=self.pooled_heatmaps_blob_name) File "C:\Users\TXN\AppData\Local\Programs\Python\Python37\lib\site-packages\ngraph\utils\decorators.py", line 22, in wrapper node = node_factory_function(*args, **kwargs) TypeError: max_pool() missing 1 required positional argument: 'dilations'

def test_mobilenet(): # todo 加载数据, 224*224的大小 模型一次训练16张图片 train_ds, test_ds, class_names = data_load(r"C:\Users\wjx\Desktop\项目\data\flower_photos_split\train", r"C:\Users\wjx\Desktop\项目\data\flower_photos_split\test", 224, 224, 16) # todo 加载模型 model = tf.keras.models.load_model("models/mobilenet_fv.h5") # model.summary() # 测试,evaluate的输出结果是验证集的损失值和准确率 loss, accuracy = model.evaluate(test_ds) # 输出结果 print('Mobilenet test accuracy :', accuracy) test_real_labels = [] test_pre_labels = [] for test_batch_images, test_batch_labels in test_ds: test_batch_labels = test_batch_labels.numpy() test_batch_pres = model.predict(test_batch_images) # print(test_batch_pres) test_batch_labels_max = np.argmax(test_batch_labels, axis=1) test_batch_pres_max = np.argmax(test_batch_pres, axis=1) # print(test_batch_labels_max) # print(test_batch_pres_max) # 将推理对应的标签取出 for i in test_batch_labels_max: test_real_labels.append(i) for i in test_batch_pres_max: test_pre_labels.append(i) # break # print(test_real_labels) # print(test_pre_labels) class_names_length = len(class_names) heat_maps = np.zeros((class_names_length, class_names_length)) for test_real_label, test_pre_label in zip(test_real_labels, test_pre_labels): heat_maps[test_real_label][test_pre_label] = heat_maps[test_real_label][test_pre_label] + 1 print(heat_maps) heat_maps_sum = np.sum(heat_maps, axis=1).reshape(-1, 1) # print(heat_maps_sum) print() heat_maps_float = heat_maps / heat_maps_sum print(heat_maps_float) # title, x_labels, y_labels, harvest show_heatmaps(title="heatmap", x_labels=class_names, y_labels=class_names, harvest=heat_maps_float, save_name="images/heatmap_mobilenet.png")

最新推荐

recommend-type

Ambari 操作指南 .docx

1. Ambari 概述:Apache Ambari 是一个开源的、基于Web的管理工具,用于监控和管理大规模的分布式系统,如Hadoop集群。 2. Ambari 的功能:Ambari 可以从集群节点和服务收集大量的信息,并把它们表现为容易使用的,...
recommend-type

Python 实现 LSTM 和 XGBoost 组合模型来预测 Apple Inc.(AAPL)股票价格(包含详细的完整的程序

内容概要:详细演示了使用 Python 中的 LSTM 和 XGBoost 结合来创建股票价格预测模型的方法。该示例介绍了从数据提取到模型优化全过程的操作,并最终通过图形比较预测值和真实值,展示模型的有效性,有助于提高金融投资决策水平和风险管理能力。本项目的亮点之一就是它融合 LSTM 捕获时间关系的强大能力和 XGBoost 在复杂特征之间的建模优势。 适用人群:有Python编程经验的人士以及金融市场投资者和技术分析师。 使用场景及目标:应用于金融市场的投资策略规划,特别是针对需要长期监控、短期交易决策的股票,用于辅助进行市场走势判断和交易决策支持。 额外信息:此外还包括对未来工作的改进建议:加入更多金融技术指标的考量以及使用更高级机器学习模型的可能性。
recommend-type

Unity UGUI性能优化实战:UGUI_BatchDemo示例

资源摘要信息:"Unity UGUI 性能优化 示例工程" 知识点: 1. Unity UGUI概述:UGUI是Unity的用户界面系统,提供了一套完整的UI组件来创建HUD和交互式的菜单系统。与传统的渲染相比,UGUI采用基于画布(Canvas)的方式来组织UI元素,通过自动的布局系统和事件系统来管理UI的更新和交互。 2. UGUI性能优化的重要性:在游戏开发过程中,用户界面通常是一个持续活跃的系统,它会频繁地更新显示内容。如果UI性能不佳,会导致游戏运行卡顿,影响用户体验。因此,针对UGUI进行性能优化是保证游戏流畅运行的关键步骤。 3. 常见的UGUI性能瓶颈:UGUI性能问题通常出现在以下几个方面: - 高数量的UI元素更新导致CPU负担加重。 - 画布渲染的过度绘制(Overdraw),即屏幕上的像素被多次绘制。 - UI元素没有正确使用批处理(Batching),导致过多的Draw Call。 - 动态创建和销毁UI元素造成内存问题。 - 纹理资源管理不当,造成不必要的内存占用和加载时间。 4. 本示例工程的目的:本示例工程旨在展示如何通过一系列技术和方法对Unity UGUI进行性能优化,从而提高游戏运行效率,改善玩家体验。 5. UGUI性能优化技巧: - 重用UI元素:通过将不需要变化的UI元素实例化一次,并在需要时激活或停用,来避免重复创建和销毁,降低GC(垃圾回收)的压力。 - 降低Draw Call:启用Canvas的Static Batching特性,把相同材质的UI元素合并到同一个Draw Call中。同时,合理设置UI元素的Render Mode,比如使用Screen Space - Camera模式来减少不必要的渲染负担。 - 避免过度绘制:在布局设计时考虑元素的层级关系,使用遮挡关系减少渲染区域,尽量不使用全屏元素。 - 合理使用材质和纹理:将多个小的UI纹理合并到一张大的图集中,减少纹理的使用数量。对于静态元素,使用压缩过的不透明纹理,并且关闭纹理的alpha测试。 - 动态字体管理:对于动态生成的文本,使用UGUI的Text组件时,如果字体内容不变,可以缓存字体制作的结果,避免重复字体生成的开销。 - Profiler工具的使用:利用Unity Profiler工具来监控UI渲染的性能瓶颈,通过分析CPU和GPU的使用情况,准确地找到优化的切入点。 6. 示例工程结构:示例工程应该包含多种UGUI使用场景,包括但不限于按钮点击、滚动列表、动态文本显示等,以展示在不同情况下优化技巧的应用。 7. 本示例工程包含的文件列表说明:UGUI_BatchDemo可能是一个预设的场景或者一系列预制件,这些文件展示了优化后的UGUI实践,用户可以通过实际运行这些预制件和场景来学习和理解性能优化的原理和效果。 通过深入学习和应用本示例工程中提供的各种优化技术和方法,开发者能够更好地掌握如何在实际项目中对UGUI进行优化,从而在保证用户体验的同时,提升游戏的运行效率。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【Twisted Python高级教程】:3小时打造高性能网络服务

![【Twisted Python高级教程】:3小时打造高性能网络服务](https://img-blog.csdnimg.cn/5093feab42874bdeb39ac8af1dd1c38a.png) # 1. Twisted Python概述与安装配置 ## 1.1 什么是Twisted Python Twisted是一个以事件驱动为核心的Python网络框架,支持广泛的网络协议。它特别适合开发高性能、长时间运行的网络服务。Twisted的独特之处在于其异步编程模型,它能够处理成千上万的连接,而不必为每个连接分配一个线程。 ## 1.2 安装Twisted 为了安装Twisted
recommend-type

当函数名字是void时,函数内部想要结束时不能return 0应该怎么办

当C++函数返回类型为`void`时,这意味着函数不直接返回任何值。在这种情况下,如果你想要表示函数执行完毕或者成功完成,通常不会使用`return 0`这样的语句。因为`return`关键字用于返回值给调用者,而在`void`函数中没有实际返回值。 相反,你可以选择以下几种方式来表示函数执行的完成或状态: 1. **无返回值**:如果函数确实完成了所有操作并且不需要通知调用者任何信息,就简单地让函数体结束即可,无需特别处理。 ```cpp void myFunction() { // 函数体内的代码 // ... // 没有 return 语句 } ``` 2
recommend-type

Java实现小游戏飞翔的小鸟教程分享

资源摘要信息:"小游戏飞翔的小鸟(Java实现)" 本资源为一个以Java语言实现的简单小游戏项目,名为“飞翔的小鸟”,主要面向Java初学者提供学习与实践的机会。此项目通过构建一个互动性强的小游戏,不仅能够帮助初学者理解和掌握Java编程的基本知识,还能够增进其对游戏开发流程的理解。通过分析项目中的源代码以及游戏的设计思路,初学者将能够学习到Java编程的基本语法、面向对象编程思想、以及简单的游戏逻辑实现。 该项目采用了Java编程语言进行开发,因此对于想要学习Java的初学者来说,是一个很好的实践项目。在项目中,初学者将接触到Java的基本语法结构,如变量定义、条件判断、循环控制、方法定义等。通过阅读和理解代码,学习者可以了解如何使用Java来创建类和对象,以及如何利用继承、封装、多态等面向对象的特性来构建游戏中的角色和功能模块。 此外,本项目还涉及到了游戏开发中的一些基本概念,例如游戏循环、事件处理、碰撞检测等。在“飞翔的小鸟”游戏中,玩家需要控制一只小鸟在屏幕上飞翔,避免撞到障碍物。学习者可以从中学习到如何使用Java图形用户界面(GUI)编程,例如通过Swing或JavaFX框架来设计和实现游戏界面。同时,项目中可能还会涉及到游戏物理引擎的简单应用,比如重力和碰撞的模拟,这些都是游戏开发中的重要概念。 由于项目描述中未提供具体的文件列表信息,无法进一步分析项目的细节。不过,通过文件名称“0797”我们无法得知具体的项目内容,这可能是一个版本号、项目编号或是其他标识符。在实际学习过程中,初学者应当下载完整的项目文件,包括源代码、资源文件和文档说明,以便完整地理解和学习整个项目。 总之,对于Java初学者来说,“飞翔的小鸟”项目是一个很好的学习资源。通过项目实践,学习者可以加深对Java语言的理解,熟悉面向对象编程,以及探索游戏开发的基础知识。同时,该项目也鼓励学习者将理论知识应用于实际问题的解决中,从而提高编程能力和解决实际问题的能力。欢迎广大初学者下载使用,并在实践中不断提高自己的技术水平。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

Twisted Python异步编程基础:回调与Deferreds的终极指南

![Twisted Python异步编程基础:回调与Deferreds的终极指南](https://opengraph.githubassets.com/6a288a9eb385992f15207b8f2029fc22afe4d7b4d91b56c5467944b747c325e9/twisted/twisted) # 1. Twisted Python异步编程概述 在当今的网络应用开发领域,异步编程模型越来越受到重视。Python作为一门广泛使用的编程语言,在网络编程方面同样具有强大的异步处理能力。Twisted是一个用Python编写的事件驱动的网络编程框架,它是理解和掌握异步编程原理的
recommend-type

如何让图表同时实时更新两组数据

要在图表中同时实时更新两组数据,通常需要使用能够处理实时数据流并具备双向绑定功能的数据可视化库,如D3.js、Plotly.js或ECharts等。以下是使用JavaScript和一些这类库的一个基本步骤: 1. **选择合适的库**:比如在React或Vue中,ECharts或Recharts是不错的选择,它们都支持数据驱动视图和实时更新。 2. **设置数据源**:定义两个数据数组,分别代表你要显示的两组数据。你可以通过API、数据库查询或者其他事件驱动的方式实时获取新的数据。 3. **初始化图表**:创建图表实例,并配置初始的图表样式和数据源。例如,在ECharts中,`setO