大整数的乘法采用KaraTsuba乘法来实现2. 输入两个非常大的正整数A,B(小于1000位),输出A*B的结果C语言实现
时间: 2024-09-21 18:10:03 浏览: 59
大整数乘法的高效实现通常依赖于Karatsuba算法,这是一种分治策略,用于减少直接相乘所需的计算量。传统的长除法对于大整数会变得非常低效,而Karatsuba通过将大数分解成较小的部分,分别计算然后组合,显著减少了乘积的复杂度。
下面是C语言中简单实现Karatsuba算法的一个版本,假设我们已经有一个函数`divide`用于大数除法和`add`用于大数加法:
```c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
// 辅助函数,将字符串转换为整数
int str_to_int(char *str) {
int num = 0;
for (int i = 0; str[i]; i++) {
num *= 10;
num += str[i] - '0';
}
return num;
}
// Karatsuba乘法
char* karatsuba_multiply(char *a, char *b) {
int n = strlen(a), m = strlen(b);
// 如果数字长度小于3,常规乘法即可
if (n <= 3 || m <= 3) {
return multiply(a, b);
}
// 计算n和m的中间值
int mid_n = n / 2, mid_m = m / 2;
// 分解并计算辅助结果
char *a1 = malloc((mid_n + 1) * sizeof(char));
char *a2 = a + mid_n;
char *b1 = malloc((mid_m + 1) * sizeof(char));
char *b2 = b + mid_m;
a1[mid_n] = '\0'; a2[mid_n] = '\0';
b1[mid_m] = '\0'; b2[mid_m] = '\0';
int x1 = str_to_int(a1), y1 = str_to_int(b1);
int x2 = str_to_int(a2), y2 = str_to_int(b2);
// 使用递归调用Karatsuba
char *z1 = karatsuba_multiply(a1, b1); // z1 = x1*y1
char *z2 = karatsuba_multiply(a2, b2); // z2 = x2*y2
char *z3 = karatsuba_multiply(add_str(x1, x2), add_str(y1, y2)); // z3 = (x1+x2)*(y1+y2)
// 合并结果
char *res = create_new_string(n + m);
int k = str_to_int(z1) + (str_to_int(z2) << (mid_n + mid_m)) + (str_to_int(z3) >> (mid_n + mid_m));
int i = n - 1;
while (i >= mid_n) {
res[i] = ((k % 10) + '0');
k /= 10;
i--;
}
free(a1); free(a2);
free(b1); free(b2);
return res;
}
// 其他辅助函数...
```
注意,这个示例仅给出了基本框架,实际完整实现需要包含更多的错误检查、边界处理以及`multiply`、`add_str`等辅助函数。此外,这里并没有提供`create_new_string`和`add_str`的具体实现,这些都是为了简化演示而省略的细节。
阅读全文
相关推荐


















