用matlab代码实现朴素贝叶斯分类器,要求如下:1.导入鸢尾花数据集; 2.分别取三个类中每个类的40个样本作为训练集,10个样本作为测试集; 3.计算每个类的概率密度函数,即每个类的样本均值与方差(假设样本特征数据满足高斯分布); 4.将测试样本带入每个类的概率密度函数,并判断该样本属于哪个类别; 5.计算精确率,召回率,F度量
时间: 2024-03-24 14:39:30 浏览: 115
Matlab实现朴素贝叶斯分类算法
5星 · 资源好评率100%
好的,我可以帮你实现这个问题。下面是实现步骤:
1. 导入鸢尾花数据集
```matlab
load fisheriris
X = meas; % 特征数据
Y = species; % 标签数据
```
2. 分别取三个类中每个类的40个样本作为训练集,10个样本作为测试集
```matlab
train_data = [];
train_label = [];
test_data = [];
test_label = [];
for i = 1:3
idx = find(strcmp(Y, unique(Y(i))));
idx_train = idx(1:40);
idx_test = idx(41:50);
train_data = [train_data; X(idx_train, :)];
train_label = [train_label; Y(idx_train)];
test_data = [test_data; X(idx_test, :)];
test_label = [test_label; Y(idx_test)];
end
```
3. 计算每个类的概率密度函数,即每个类的样本均值与方差
```matlab
% 计算每个类的均值和方差
mu = zeros(3, size(X, 2));
sigma = zeros(3, size(X, 2));
for i = 1:3
idx = find(strcmp(train_label, unique(Y(i))));
mu(i, :) = mean(train_data(idx, :));
sigma(i, :) = var(train_data(idx, :));
end
```
4. 将测试样本带入每个类的概率密度函数,并判断该样本属于哪个类别
```matlab
% 计算测试集的预测标签
pred = zeros(size(test_data, 1), 1);
for i = 1:size(test_data, 1)
prob = zeros(3, 1);
for j = 1:3
p = 1;
for k = 1:size(test_data, 2)
p = p * normpdf(test_data(i, k), mu(j, k), sqrt(sigma(j, k)));
end
prob(j) = p;
end
[~, idx] = max(prob);
pred(i) = idx;
end
```
5. 计算精确率,召回率,F度量
```matlab
% 计算评价指标
accuracy = sum(pred == test_label) / length(test_label);
precision = zeros(3, 1);
recall = zeros(3, 1);
F_measure = zeros(3, 1);
for i = 1:3
idx = find(strcmp(test_label, unique(Y(i))));
TP = sum(pred(idx) == i);
FP = sum(pred(idx) ~= i);
FN = sum(test_label(idx) ~= i);
precision(i) = TP / (TP + FP);
recall(i) = TP / (TP + FN);
F_measure(i) = 2 * precision(i) * recall(i) / (precision(i) + recall(i));
end
```
完整代码如下:
```matlab
load fisheriris
X = meas;
Y = species;
% 分别取三个类中每个类的40个样本作为训练集,10个样本作为测试集
train_data = [];
train_label = [];
test_data = [];
test_label = [];
for i = 1:3
idx = find(strcmp(Y, unique(Y(i))));
idx_train = idx(1:40);
idx_test = idx(41:50);
train_data = [train_data; X(idx_train, :)];
train_label = [train_label; Y(idx_train)];
test_data = [test_data; X(idx_test, :)];
test_label = [test_label; Y(idx_test)];
end
% 计算每个类的均值和方差
mu = zeros(3, size(X, 2));
sigma = zeros(3, size(X, 2));
for i = 1:3
idx = find(strcmp(train_label, unique(Y(i))));
mu(i, :) = mean(train_data(idx, :));
sigma(i, :) = var(train_data(idx, :));
end
% 计算测试集的预测标签
pred = zeros(size(test_data, 1), 1);
for i = 1:size(test_data, 1)
prob = zeros(3, 1);
for j = 1:3
p = 1;
for k = 1:size(test_data, 2)
p = p * normpdf(test_data(i, k), mu(j, k), sqrt(sigma(j, k)));
end
prob(j) = p;
end
[~, idx] = max(prob);
pred(i) = idx;
end
% 计算评价指标
accuracy = sum(pred == test_label) / length(test_label);
precision = zeros(3, 1);
recall = zeros(3, 1);
F_measure = zeros(3, 1);
for i = 1:3
idx = find(strcmp(test_label, unique(Y(i))));
TP = sum(pred(idx) == i);
FP = sum(pred(idx) ~= i);
FN = sum(test_label(idx) ~= i);
precision(i) = TP / (TP + FP);
recall(i) = TP / (TP + FN);
F_measure(i) = 2 * precision(i) * recall(i) / (precision(i) + recall(i));
end
```
阅读全文