HRN高响应比优先调度

时间: 2023-11-13 14:05:17 浏览: 490
HRN(Highest Response Ratio Next)是一种进程调度算法,它通过计算当前进程的响应比来确定下一个执行的进程。响应比是指进程等待时间与服务时间的比值,它反映了进程的紧急程度。 HRN调度算法的基本思路是:对于每个等待执行的进程,计算其响应比,选择响应比最高的进程执行。响应比越高的进程,意味着它们在等待执行的时间越长,优先级也越高。 相比其他调度算法,HRN具有以下优点: - 能够避免饥饿现象,即长时间等待执行的进程不会被无限期地忽略。 - 能够提高系统的吞吐量和响应时间,因为它考虑了进程的等待时间和服务时间。 但是,HRN也存在一些缺点,如计算响应比需要消耗一定的CPU时间,可能导致系统的负载增加;对于长作业来说,响应比可能会很低,导致长时间等待执行。
相关问题

用C++语言编程实现最高响应比优先调度算法

最高响应比优先调度算法是一种常用的进程调度算法,其核心思想是根据进程的响应比来确定下一个要执行的进程。具体实现可以参考以下代码: ```c #include <stdio.h> struct process { int pid; // 进程ID int burst_time; // 进程执行时间 int arrival_time; // 进程到达时间 int waiting_time; // 进程等待时间 int turnaround_time; // 进程周转时间 float response_ratio; // 进程响应比 }; // 计算进程的等待时间、周转时间和响应比 void calculate_time(struct process *p, int n) { int i; float sum_waiting_time = 0, sum_turnaround_time = 0; for (i = 0; i < n; i++) { p[i].turnaround_time = p[i].burst_time + p[i].waiting_time; p[i].response_ratio = (float)p[i].turnaround_time / p[i].burst_time; sum_waiting_time += p[i].waiting_time; sum_turnaround_time += p[i].turnaround_time; } printf("平均等待时间:%.2f\n", sum_waiting_time / n); printf("平均周转时间:%.2f\n", sum_turnaround_time / n); } // 最高响应比优先调度算法 void hrn_scheduling(struct process *p, int n) { int i, j, current_time = 0, total_burst_time = 0; float max_response_ratio; struct process *current_process; // 计算总的执行时间 for (i = 0; i < n; i++) { total_burst_time += p[i].burst_time; } // 按照到达时间排序 for (i = 0; i < n - 1; i++) { for (j = i + 1; j < n; j++) { if (p[i].arrival_time > p[j].arrival_time) { struct process temp = p[i]; p[i] = p[j]; p[j] = temp; } } } // 执行进程 while (current_time < total_burst_time) { max_response_ratio = -1; current_process = NULL; // 找到响应比最高的进程 for (i = 0; i < n; i++) { if (p[i].burst_time > 0 && p[i].arrival_time <= current_time) { if (p[i].response_ratio > max_response_ratio) { max_response_ratio = p[i].response_ratio; current_process = &p[i]; } } } // 执行进程 if (current_process != NULL) { current_process->burst_time--; current_time++; // 更新等待时间 for (i = 0; i < n; i++) { if (p[i].burst_time > 0 && p[i].arrival_time <= current_time && &p[i] != current_process) { p[i].waiting_time++; } } } else { current_time++; } } // 计算进程的等待时间、周转时间和响应比 calculate_time(p, n); } int main() { int i, n; struct process p[10]; printf("请输入进程数:"); scanf("%d", &n); printf("请输入每个进程的执行时间和到达时间:\n"); for (i = 0; i < n; i++) { printf("进程%d:", i + 1); scanf("%d %d", &p[i].burst_time, &p[i].arrival_time); p[i].pid = i + 1; p[i].waiting_time = 0; } hrn_scheduling(p, n); return 0; } ``` 以上代码实现了最高响应比优先调度算法,可以根据输入的进程执行时间和到达时间计算出每个进程的等待时间、周转时间和响应比,并输出平均等待时间和平均周转时间。

编程实现最高响应比优先算法HRN,并分析算法的优缺点。

HRN算法是一种基于响应比的动态优先级调度算法。在HRN算法中,每个进程的响应比由其等待时间和需要执行的总时间的比值计算而来。响应比越高的进程越优先执行,从而增加系统的吞吐率和响应时间。优点在于它兼顾了进程的等待时间和执行时间,挽救了先来先服务算法中可能出现的饥饿问题。但是HRN算法也有一些缺点,比如进程长时间等待、短进程频繁抢占等情况下,可能导致优先级的不稳定性,影响系统的性能表现。
阅读全文

相关推荐

rar
实验一 批处理系统的作业调度 1.实验目的 加深对作业概念的理解; 深入了解批处理系统如何组织作业、管理作业和调度作业; 2.实验预备知识 作业的概念; 作业的创建; 作业的调度。 3.实验内容 编写程序完成批处理系统中的作业调度,要求采用响应比高者优先的作业调度算法。实验具体包括:首先确定作业控制块的内容,作业控制块的组成方式;然后完成作业调度;最后编写主函数对所作工作进程测试。 4.提示与讲解 操作系统根据允许并行工作的道数和一定的算法从系统中选取若干作业把它们装入主存储器,使它们有机会获得处理器运行,这项工作被称为“作业调度”。实现这部分功能的程序就是“作业调度程序”。 作业调度的实现主要有两个问题,一个是如何将系统中的作业组织起来;另一个是如何进行作业调度。 为了将系统中的作业组织起来,需要为每个进入系统的作业建立档案以记录和作业相关的信息,例如作业名、作业所需资源、作业执行时间、作业进入系统的时间、作业信息在存储器中的位置、指向下一个作业控制块的指针等信息。这个记录作业相关信息的数据块称为作业控制块(JCB),并将系统中等待作业调度的作业控制块组织成一个队列,这个队列称为后备队列。一个作业全部信息进入系统后,就为其建立作业控制块,并挂入后备队列。当进行作业调度时,从后备队列中查找选择作业。 由于实验中没有实际作业,作业控制块中的信息内容只使用了实验中需要的数据。作业控制块中首先应该包括作业名;其次是作业所需资源,根据需要,实验中只包括需要主存的大小(采用可移动的动态分区方式管理主存,作业大小就是需要主存的大小)、需要打印机的数量和需要磁带机的数量;采用响应比作业调度算法,为了计算响应比,还需要有作业的估计执行时间、作业在系统中的等待时间;另外,指向下一个作业控制块的指针必不可少。

最新推荐

recommend-type

“短进程优先”、“时间片轮转”、“高响应比优先”调度算法

本实验涉及三种常见的调度算法:短进程优先(SPF)、时间片轮转(RR)和高响应比优先(HRN),目的是通过模拟调度过程来理解这些算法的工作原理及其对系统性能的影响。 首先,让我们逐一探讨这三种算法: 1. **短...
recommend-type

操作系统实验报告二——作业调度实验报告

本实验报告详细介绍了如何通过编程模拟三种基本的作业调度算法:先来先服务(FCFS)、最短作业优先(SJF)和响应比高者优先(HRN)。 1. **先来先服务(FCFS)调度算法**: FCFS是最简单的调度策略,按照作业到达...
recommend-type

单道批处理系统作业调度

2. **选择作业**:模拟三种调度算法:先来先服务(FCFS)、短作业优先(SJF)和高响应比优先(HRN)。FCFS按照作业到达的顺序选择;SJF优先选择运行时间最短的作业;HRN则考虑作业的响应比,即等待时间与运行时间的...
recommend-type

操作系统 模拟作业调度

这样,即使一个作业的运行时间较长,只要它的等待时间足够长,也有可能被优先调度,从而避免了SJF的饥饿问题。 实验的实施涉及以下几个关键步骤: 1. **设计作业队列数据结构**:每个作业由一个作业控制块(JCB)...
recommend-type

操作系统实验指导书(用c语言实现了操作系统里的几个经典算法!)

在实验二中,学生需要理解作业控制块(JCB)的结构,并实现如先来先服务(FCFS)、短作业优先(SJF)和高响应比优先(HRN)等调度算法。这些算法的目标是优化系统效率和作业完成时间。 2. **进程调度模拟**: 实验...
recommend-type

世界地图Shapefile文件解析与测试指南

标题中提到的“世界地图的shapefile文件”,涉及到两个关键概念:世界地图和shapefile文件格式。首先我们来解释这两个概念。 世界地图是一个地理信息系统(GIS)中常见的数据类型,通常包含了世界上所有或大部分国家、地区、自然地理要素的图形表达。世界地图可以以多种格式存在,比如栅格数据格式(如JPEG、PNG图片)和矢量数据格式(如shapefile、GeoJSON、KML等)。 shapefile文件是一种流行的矢量数据格式,由ESRI(美国环境系统研究所)开发。它主要用于地理信息系统(GIS)软件,用于存储地理空间数据及其属性信息。shapefile文件实际上是一个由多个文件组成的文件集,这些文件包括.shp、.shx、.dbf等文件扩展名,分别存储了图形数据、索引、属性数据等。这种格式广泛应用于地图制作、数据管理、空间分析以及地理研究。 描述提到,这个shapefile文件适合应用于解析shapefile程序的测试。这意味着该文件可以被用于测试或学习如何在程序中解析shapefile格式的数据。对于GIS开发人员或学习者来说,能够处理和解析shapefile文件是一项基本而重要的技能。它需要对文件格式有深入了解,以及如何在各种编程语言中读取和写入这些文件。 标签“世界地图 shapefile”为这个文件提供了两个关键词。世界地图指明了这个shapefile文件内容的地理范围,而shapefile指明了文件的数据格式。标签的作用通常是用于搜索引擎优化,帮助人们快速找到相关的内容或文件。 在压缩包子文件的文件名称列表中,我们看到“wold map”这个名称。这应该是“world map”的误拼。这提醒我们在处理文件时,确保文件名称的准确性和规范性,以避免造成混淆或搜索不便。 综合以上信息,知识点的详细介绍如下: 1. 世界地图的概念:世界地图是地理信息系统中一个用于表现全球或大范围区域地理信息的图形表现形式。它可以显示国界、城市、地形、水体等要素,并且可以包含多种比例尺。 2. shapefile文件格式:shapefile是一种矢量数据格式,非常适合用于存储和传输地理空间数据。它包含了多个相关联的文件,以.shp、.shx、.dbf等文件扩展名存储不同的数据内容。每种文件类型都扮演着关键角色: - .shp文件:存储图形数据,如点、线、多边形等地理要素的几何形状。 - .shx文件:存储图形数据的索引,便于程序快速定位数据。 - .dbf文件:存储属性数据,即与地理要素相关联的非图形数据,例如国名、人口等信息。 3. shapefile文件的应用:shapefile文件在GIS应用中非常普遍,可以用于地图制作、数据编辑、空间分析、地理数据的共享和交流等。由于其广泛的兼容性,shapefile格式被许多GIS软件所支持。 4. shapefile文件的处理:GIS开发人员通常需要在应用程序中处理shapefile数据。这包括读取shapefile数据、解析其内容,并将其用于地图渲染、空间查询、数据分析等。处理shapefile文件时,需要考虑文件格式的结构和编码方式,正确解析.shp、.shx和.dbf文件。 5. shapefile文件的测试:shapefile文件在开发GIS相关程序时,常被用作测试材料。开发者可以使用已知的shapefile文件,来验证程序对地理空间数据的解析和处理是否准确无误。测试过程可能包括读取测试、写入测试、空间分析测试等。 6. 文件命名的准确性:文件名称应该准确无误,以避免在文件存储、传输或检索过程中出现混淆。对于地理数据文件来说,正确的命名还对确保数据的准确性和可检索性至关重要。 以上知识点涵盖了世界地图shapefile文件的基础概念、技术细节、应用方式及处理和测试等重要方面,为理解和应用shapefile文件提供了全面的指导。
recommend-type

Python环境监控高可用构建:可靠性增强的策略

# 1. Python环境监控高可用构建概述 在构建Python环境监控系统时,确保系统的高可用性是至关重要的。监控系统不仅要在系统正常运行时提供实时的性能指标,而且在出现故障或性能瓶颈时,能够迅速响应并采取措施,避免业务中断。高可用监控系统的设计需要综合考虑监控范围、系统架构、工具选型等多个方面,以达到对资源消耗最小化、数据准确性和响应速度最优化的目
recommend-type

需要在matlab当中批量导入表格数据的指令

### 如何在 MATLAB 中批量导入表格数据 为了高效地处理多个表格文件,在 MATLAB 中可以利用脚本自动化这一过程。通过编写循环结构读取指定目录下的所有目标文件并将其内容存储在一个统一的数据结构中,能够显著提升效率。 对于 Excel 文件而言,`readtable` 函数支持直接从 .xls 或者 .xlsx 文件创建 table 类型变量[^2]。当面对大量相似格式的 Excel 表格时,可以通过遍历文件夹内的每一个文件来完成批量化操作: ```matlab % 定义要扫描的工作路径以及输出保存位置 inputPath = 'C:\path\to\your\excelFil
recommend-type

Sqlcipher 3.4.0版本发布,优化SQLite兼容性

从给定的文件信息中,我们可以提取到以下知识点: 【标题】: "sqlcipher-3.4.0" 知识点: 1. SQLCipher是一个开源的数据库加密扩展,它为SQLite数据库增加了透明的256位AES加密功能,使用SQLCipher加密的数据库可以在不需要改变原有SQL语句和应用程序逻辑的前提下,为存储在磁盘上的数据提供加密保护。 2. SQLCipher版本3.4.0表示这是一个特定的版本号。软件版本号通常由主版本号、次版本号和修订号组成,可能还包括额外的前缀或后缀来标识特定版本的状态(如alpha、beta或RC - Release Candidate)。在这个案例中,3.4.0仅仅是一个版本号,没有额外的信息标识版本状态。 3. 版本号通常随着软件的更新迭代而递增,不同的版本之间可能包含新的特性、改进、修复或性能提升,也可能是对已知漏洞的修复。了解具体的版本号有助于用户获取相应版本的特定功能或修复。 【描述】: "sqlcipher.h是sqlite3.h的修正,避免与系统预安装sqlite冲突" 知识点: 1. sqlcipher.h是SQLCipher项目中定义特定加密功能和配置的头文件。它基于SQLite的头文件sqlite3.h进行了定制,以便在SQLCipher中提供数据库加密功能。 2. 通过“修正”原生SQLite的头文件,SQLCipher允许用户在相同的编程环境或系统中同时使用SQLite和SQLCipher,而不会引起冲突。这是因为两者共享大量的代码基础,但SQLCipher扩展了SQLite的功能,加入了加密支持。 3. 系统预安装的SQLite可能与需要特定SQLCipher加密功能的应用程序存在库文件或API接口上的冲突。通过使用修正后的sqlcipher.h文件,开发者可以在不改动现有SQLite数据库架构的基础上,将应用程序升级或迁移到使用SQLCipher。 4. 在使用SQLCipher时,开发者需要明确区分它们的头文件和库文件,避免链接到错误的库版本,这可能会导致运行时错误或安全问题。 【标签】: "sqlcipher" 知识点: 1. 标签“sqlcipher”直接指明了这个文件与SQLCipher项目有关,说明了文件内容属于SQLCipher的范畴。 2. 一个标签可以用于过滤、分类或搜索相关的文件、代码库或资源。在这个上下文中,标签可能用于帮助快速定位或检索与SQLCipher相关的文件或库。 【压缩包子文件的文件名称列表】: sqlcipher-3.4.0 知识点: 1. 由于给出的文件名称列表只有一个条目 "sqlcipher-3.4.0",它很可能指的是压缩包文件名。这表明用户可能下载了一个压缩文件,解压后的内容应该与SQLCipher 3.4.0版本相关。 2. 压缩文件通常用于减少文件大小或方便文件传输,尤其是在网络带宽有限或需要打包多个文件时。SQLCipher的压缩包可能包含头文件、库文件、示例代码、文档、构建脚本等。 3. 当用户需要安装或更新SQLCipher到特定版本时,他们通常会下载对应的压缩包文件,并解压到指定目录,然后根据提供的安装指南或文档进行编译和安装。 4. 文件名中的版本号有助于确认下载的SQLCipher版本,确保下载的压缩包包含了期望的特性和功能。 通过上述详细解析,我们可以了解到关于SQLCipher项目版本3.4.0的相关知识,以及如何处理和使用与之相关的文件。
recommend-type

Python环境监控性能监控与调优:专家级技巧全集

# 1. Python环境性能监控概述 在当今这个数据驱动的时代,随着应用程序变得越来越复杂和高性能化,对系统性能的监控和优化变得至关重要。Python作为一种广泛应用的编程语言,其环境性能监控不仅能够帮助我们了解程序运行状态,还能及时发现潜在的性能瓶颈,预防系统故障。本章将概述Python环境性能监控的重要性,提供一个整体框架,以及为后续章节中深入探讨各个监控技术打