ax[0].plot(time, reconstructed_pressure, label='Filtered Pressure') 什么意思
时间: 2024-04-10 10:29:11 浏览: 159
`ax[0].plot(time, reconstructed_pressure, label='Filtered Pressure')` 的意思是在第一个图形对象(ax[0])上绘制一条曲线。
具体解释如下:
- `ax[0]` 表示第一个子图对象,可以理解为在一个图形窗口中有多个子图,`ax[0]` 表示第一个子图。
- `plot()` 是一个函数,用于在图形对象上绘制曲线。
- `time` 是x轴的数据,即时间序列数据。
- `reconstructed_pressure` 是y轴的数据,即通过某种处理方法(例如小波重构)得到的压力信号的过滤结果。
- `label='Filtered Pressure'` 是为绘制的曲线添加一个标签,标识为“Filtered Pressure”。
通过这行代码,你可以在图形窗口的第一个子图上绘制出经过某种处理方法得到的过滤后的压力信号曲线,并使用“Filtered Pressure”作为曲线的标签。这有助于可视化展示信号处理的效果,并在图形中标识出对应的曲线含义。
相关问题
fig, ax1 = plt.subplots() ax1.plot(train_losses, label='Train Loss') ax1.plot(train_accs, label='Train Acc') ax1.set_ylim([0, 1]) ax1.yaxis.set_major_locator(y_major_locator) ax1.set_xlabel('Epoch') ax1.set_ylabel('Loss/Accuracy') ax1.legend() 使两条曲线线条有差别
要使两条曲线线条有差别,可以使用不同的颜色、线型或标记。以下是一些示例代码:
1. 使用不同的颜色:
```
fig, ax1 = plt.subplots()
ax1.plot(train_losses, label='Train Loss', color='red')
ax1.plot(train_accs, label='Train Acc', color='blue')
ax1.set_ylim([0, 1])
ax1.yaxis.set_major_locator(y_major_locator)
ax1.set_xlabel('Epoch')
ax1.set_ylabel('Loss/Accuracy')
ax1.legend()
```
2. 使用不同的线型:
```
fig, ax1 = plt.subplots()
ax1.plot(train_losses, label='Train Loss', linestyle='--')
ax1.plot(train_accs, label='Train Acc', linestyle=':')
ax1.set_ylim([0, 1])
ax1.yaxis.set_major_locator(y_major_locator)
ax1.set_xlabel('Epoch')
ax1.set_ylabel('Loss/Accuracy')
ax1.legend()
```
3. 使用不同的标记:
```
fig, ax1 = plt.subplots()
ax1.plot(train_losses, label='Train Loss', marker='o')
ax1.plot(train_accs, label='Train Acc', marker='s')
ax1.set_ylim([0, 1])
ax1.yaxis.set_major_locator(y_major_locator)
ax1.set_xlabel('Epoch')
ax1.set_ylabel('Loss/Accuracy')
ax1.legend()
```
你可以根据自己的需求选择其中一种或多种方法。
def draw_stats(self, vals, vals1, vals2, vals3, vals4, vals5, vals6): self.ax1 = plt.subplot(self.gs[0, 0]) self.ax1.plot(vals) self.ax1.set_xlim(self.xlim) locs = self.ax1.get_xticks() locs[0] = self.xlim[0] locs[-1] = self.xlim[1] self.ax1.set_xticks(locs) self.ax1.use_sticky_edges = False self.ax1.set_title(f'Connected Clients Ratio') self.ax2 = plt.subplot(self.gs[1, 0]) self.ax2.plot(vals1) self.ax2.set_xlim(self.xlim) self.ax2.set_xticks(locs) self.ax2.yaxis.set_major_formatter(FuncFormatter(format_bps)) self.ax2.use_sticky_edges = False self.ax2.set_title('Total Bandwidth Usage') self.ax3 = plt.subplot(self.gs[2, 0]) self.ax3.plot(vals2) self.ax3.set_xlim(self.xlim) self.ax3.set_xticks(locs) self.ax3.use_sticky_edges = False self.ax3.set_title('Bandwidth Usage Ratio in Slices (Averaged)') self.ax4 = plt.subplot(self.gs[3, 0]) self.ax4.plot(vals3) self.ax4.set_xlim(self.xlim) self.ax4.set_xticks(locs) self.ax4.use_sticky_edges = False self.ax4.set_title('Client Count Ratio per Slice') self.ax5 = plt.subplot(self.gs[0, 1]) self.ax5.plot(vals4) self.ax5.set_xlim(self.xlim) self.ax5.set_xticks(locs) self.ax5.use_sticky_edges = False self.ax5.set_title('Coverage Ratio') self.ax6 = plt.subplot(self.gs[1, 1]) self.ax6.plot(vals5) self.ax6.set_xlim(self.xlim) self.ax6.set_xticks(locs) self.ax6.yaxis.set_major_formatter(FormatStrFormatter('%.3f')) self.ax6.use_sticky_edges = False self.ax6.set_title('Block ratio') self.ax7 = plt.subplot(self.gs[2, 1]) self.ax7.plot(vals6) self.ax7.set_xlim(self.xlim) self.ax7.set_xticks(locs) self.ax7.yaxis.set_major_formatter(FormatStrFormatter('%.3f')) self.ax7.use_sticky_edges = False self.ax7.set_title('Handover ratio')修改为一张张输出图片
好的,你可以将这段代码修改为:
```python
def draw_stats(self, vals, vals1, vals2, vals3, vals4, vals5, vals6, save_path):
fig, axs = plt.subplots(4, 2, figsize=(16, 16))
axs[0, 0].plot(vals)
axs[0, 0].set_xlim(self.xlim)
locs = axs[0, 0].get_xticks()
locs[0] = self.xlim[0]
locs[-1] = self.xlim[1]
axs[0, 0].set_xticks(locs)
axs[0, 0].use_sticky_edges = False
axs[0, 0].set_title(f'Connected Clients Ratio')
axs[1, 0].plot(vals1)
axs[1, 0].set_xlim(self.xlim)
axs[1, 0].set_xticks(locs)
axs[1, 0].yaxis.set_major_formatter(FuncFormatter(format_bps))
axs[1, 0].use_sticky_edges = False
axs[1, 0].set_title('Total Bandwidth Usage')
axs[2, 0].plot(vals2)
axs[2, 0].set_xlim(self.xlim)
axs[2, 0].set_xticks(locs)
axs[2, 0].use_sticky_edges = False
axs[2, 0].set_title('Bandwidth Usage Ratio in Slices (Averaged)')
axs[3, 0].plot(vals3)
axs[3, 0].set_xlim(self.xlim)
axs[3, 0].set_xticks(locs)
axs[3, 0].use_sticky_edges = False
axs[3, 0].set_title('Client Count Ratio per Slice')
axs[0, 1].plot(vals4)
axs[0, 1].set_xlim(self.xlim)
axs[0, 1].set_xticks(locs)
axs[0, 1].use_sticky_edges = False
axs[0, 1].set_title('Coverage Ratio')
axs[1, 1].plot(vals5)
axs[1, 1].set_xlim(self.xlim)
axs[1, 1].set_xticks(locs)
axs[1, 1].yaxis.set_major_formatter(FormatStrFormatter('%.3f'))
axs[1, 1].use_sticky_edges = False
axs[1, 1].set_title('Block ratio')
axs[2, 1].plot(vals6)
axs[2, 1].set_xlim(self.xlim)
axs[2, 1].set_xticks(locs)
axs[2, 1].yaxis.set_major_formatter(FormatStrFormatter('%.3f'))
axs[2, 1].use_sticky_edges = False
axs[2, 1].set_title('Handover ratio')
plt.tight_layout()
plt.savefig(save_path)
plt.show()
```
这样就可以一张张输出图片了,你只需要传入一个保存路径参数 `save_path` 即可。
阅读全文
相关推荐
















