举一个使用tensorflow中MultiHeadAttention包的例子
时间: 2023-05-15 13:05:42 浏览: 92
可以参考以下代码:
```python
import tensorflow as tf
# 定义输入
query = tf.random.normal([4, 10, 8]) # [batch_size, seq_len, d_model]
key = tf.random.normal([4, 12, 8]) # [batch_size, seq_len, d_model]
value = tf.random.normal([4, 12, 8]) # [batch_size, seq_len, d_model]
# 定义MultiHeadAttention层
multi_head_attn = tf.keras.layers.MultiHeadAttention(
num_heads=2, key_dim=4, dropout=0.2)
# 使用MultiHeadAttention层
output = multi_head_attn(query, key, value)
print(output.shape) # (4, 10, 8)
```
这里使用了`tf.keras.layers.MultiHeadAttention`类来定义MultiHeadAttention层,并将`query`、`key`、`value`作为输入传入该层。最后输出的`output`的形状为`(batch_size, seq_len, d_model)`。
相关问题
编写基于TensorFlow的transformer模型代码例子
当然,我很乐意回答你的问题!以下是基于TensorFlow的transformer模型代码例子:
```python
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
# Define vocab size
vocab_size = 5000
# Define input sequence length and output sequence length
max_len = 100
# Define number of attention heads and transformer layers
num_heads = 8
num_layers = 4
# Define embedding size and feedforward size
embedding_size = 256
ffn_size = 512
# Define input token with shape (batch_size, max_len)
input_token = layers.Input(shape=(max_len,))
# Define embedding layer with shape (batch_size, max_len, embedding_size)
embedding_layer = layers.Embedding(vocab_size, embedding_size)(input_token)
# Define position embedding layer with shape (batch_size, max_len, embedding_size)
position_embedding_layer = layers.Embedding(
input_dim=max_len, output_dim=embedding_size
)(tf.range(start=0, limit=max_len, delta=1))
# Combine embedding layer with position embedding layer
combined_embedding_layer = embedding_layer + position_embedding_layer
# Define transformer layers
for i in range(num_layers):
# Define multi-head attention layer with input shape (batch_size, seq_length, embedding_size)
attention_layer = layers.MultiHeadAttention(
num_heads=num_heads, key_dim=embedding_size
)
# Define normalization layers for multi-head attention layer output
norm_layer_1 = layers.LayerNormalization(
epsilon=1e-6
)
add_and_norm_layer_1 = layers.Add()([combined_embedding_layer, attention_layer(combined_embedding_layer)])
attention_output_layer = norm_layer_1(add_and_norm_layer_1)
# Define feedforward layer with input shape (batch_size, seq_length, ffn_size)
ffn_layer = keras.Sequential(
[
layers.Dense(ffn_size, activation="relu"),
layers.Dense(embedding_size),
]
)
# Define normalization layers for feedforward layer output
norm_layer_2 = layers.LayerNormalization(
epsilon=1e-6
)
add_and_norm_layer_2 = layers.Add()([attention_output_layer, ffn_layer(attention_output_layer)])
ffn_output_layer = norm_layer_2(add_and_norm_layer_2)
# If this is not the last layer, set the combined_embedding_layer to be the current ffn_output_layer
if i != num_layers-1:
combined_embedding_layer = ffn_output_layer
# Define output token with shape (batch_size, max_len, vocab_size)
output_token = layers.Dense(vocab_size)(ffn_output_layer)
# Define model with input layer of shape (batch_size, max_len) and output layer of shape (batch_size, max_len, vocab_size)
model = keras.models.Model(inputs=[input_token], outputs=[output_token])
```
希望对你有所帮助!
用tensorflow写一个cnn和transformer组合的分类代码
好的,以下是一个使用TensorFlow实现CNN和Transformer组合的分类代码:
```python
import tensorflow as tf
from tensorflow.keras.layers import Input, Conv1D, MaxPooling1D, Flatten, Dense, Dropout
from tensorflow.keras.layers import LayerNormalization, MultiHeadAttention, Dense, Input, Flatten
from tensorflow.keras.models import Model
class CNNTransformer(Model):
def __init__(self, num_filters, filter_sizes, d_model, num_heads, ff_dim, num_classes, max_seq_len, dropout_rate=0.1):
super(CNNTransformer, self).__init__()
# Convolution Layers
self.conv_layers = []
for filter_size in filter_sizes:
conv_layer = Conv1D(num_filters, filter_size, activation='relu')
self.conv_layers.append(conv_layer)
# Transformer Layers
self.transformer_layers = []
for i in range(2):
transformer_layer = tf.keras.Sequential([
LayerNormalization(epsilon=1e-6),
MultiHeadAttention(num_heads=num_heads, key_dim=d_model),
Dropout(dropout_rate),
LayerNormalization(epsilon=1e-6),
Dense(ff_dim, activation='relu'),
Dropout(dropout_rate),
Dense(d_model),
Dropout(dropout_rate)
])
self.transformer_layers.append(transformer_layer)
# Flatten Layer
self.flatten = Flatten()
# Output Layer
self.output_layer = Dense(num_classes, activation='softmax')
# Set max sequence length
self.max_seq_len = max_seq_len
def call(self, inputs, training=True):
# Convolution Layers
conv_output = []
for conv_layer in self.conv_layers:
conv_output.append(conv_layer(inputs))
conv_output = tf.concat(conv_output, axis=-1)
# Transformer Layers
transformer_output = tf.reshape(conv_output, [-1, self.max_seq_len, conv_output.shape[-1]])
for transformer_layer in self.transformer_layers:
transformer_output = transformer_layer(transformer_output, training=training)
# Flatten Layer
flatten_output = self.flatten(transformer_output)
# Output Layer
output = self.output_layer(flatten_output)
return output
```
在上面的代码中,我们首先定义了一个`CNNTransformer`类,它继承自`tf.keras.Model`。在类的构造函数中,我们传入了许多超参数,包括卷积层的数量、卷积核的数量和大小、Transformer层的数量、多头注意力机制的头数、前馈神经网络的维度、分类的类别数量、序列的最大长度和dropout率等。然后我们在构造函数中定义了卷积层、Transformer层、Flatten层和输出层。
在`call()`方法中,我们首先将输入传递给卷积层,然后将它们的输出连接在一起。然后我们将卷积层的输出重塑为一个三维张量,并将其传递给Transformer层。最后,我们将Transformer层的输出展平,并将其传递给输出层进行分类。
接下来,我们可以使用这个类来构建我们的模型,如下所示:
```python
num_filters = 64
filter_sizes = [3, 4, 5]
d_model = 128
num_heads = 8
ff_dim = 512
num_classes = 10
max_seq_len = 100
model = CNNTransformer(num_filters, filter_sizes, d_model, num_heads, ff_dim, num_classes, max_seq_len, dropout_rate=0.1)
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
```
在这个例子中,我们使用了三个不同大小的卷积核,分别为3、4和5,每个卷积核有64个过滤器。我们使用了两个Transformer层,每个层有8个头和128个隐藏单元。我们使用了一个512维的前馈神经网络,并且使用了dropout率为0.1。最后,我们使用分类交叉熵作为损失函数,Adam优化器进行优化,并使用准确度作为评估指标。
希望这个例子能够帮助你理解如何在TensorFlow中实现CNN和Transformer组合的分类模型。
阅读全文