多头注意力机制如何插入代码中
时间: 2024-09-26 22:00:17 浏览: 38
在深度学习框架如PyTorch或TensorFlow中,实现多头注意力(Multi-Head Attention)通常会涉及到自定义层或者是利用已有的库函数。这里提供一个简单的示例,假设我们正在使用PyTorch:
```python
import torch
from torch.nn import Linear, Dropout
class MultiHeadAttention(torch.nn.Module):
def __init__(self, d_model, num_heads, dropout=0.1):
super(MultiHeadAttention, self).__init__()
self.num_heads = num_heads
self.d_model = d_model
self.wq = Linear(d_model, d_model) # Query weight matrix
self.wk = Linear(d_model, d_model) # Key weight matrix
self.wv = Linear(d_model, d_model) # Value weight matrix
self.fc = Linear(d_model, d_model) # Output linear layer
self.dropout = Dropout(dropout)
def forward(self, query, key, value, mask=None):
batch_size = query.size(0)
qkv_same_dim = query.size(-1) == key.size(-1) and query.size(-1) == value.size(-1)
if not qkv_same_dim or query.size(-1) != self.d_model:
raise ValueError("Incompatible dimension")
Q, K, V = self.split_heads(query), self.split_heads(key), self.split_heads(value)
attention_scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.d_model // self.num_heads)
if mask is not None:
attention_scores = attention_scores.masked_fill(mask == 0, -1e9) # Apply masking
attention_probs = self.dropout(F.softmax(attention_scores, dim=-1))
context_layer = torch.matmul(attention_probs, V)
context_layer = self.merge_heads(context_layer)
return self.fc(context_layer)
def split_heads(self, x):
# Reshape from (batch_size, seq_len, d_model) to (batch_size, num_heads, seq_len, head_dim)
return x.view(batch_size, -1, self.num_heads, self.d_model // self.num_heads).transpose(1, 2)
def merge_heads(self, x):
# Transpose and reshape back to (batch_size, seq_len, d_model)
return x.permute(0, 2, 1, 3).contiguous().view(batch_size, -1, self.d_model)
```
这个例子中,`split_heads`用于将输入展平到各个注意力头,`merge_heads`则是将所有头的信息整合回来。`forward`函数的核心是计算注意力得分、添加mask(如果存在),然后经过softmax和dropout得到最终的context vector。
请注意,这只是一个基础版的实现,实际使用时可能需要调整以适应更大的模型和更复杂的任务配置。在TensorFlow中也有相应的API,例如`tf.keras.layers.MultiHeadAttention`。
阅读全文