我需要一个基于pytorch使用UNET网络酒精性全景图像拼接的代码
时间: 2024-01-24 13:02:19 浏览: 78
Python实现图片拼接的代码
5星 · 资源好评率100%
好的,以下是一个基于PyTorch使用UNET网络进行酒精性全景图像拼接的代码示例:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class UNet(nn.Module):
def __init__(self, in_channels=3, out_channels=3):
super(UNet, self).__init__()
self.conv1 = nn.Conv2d(in_channels, 64, kernel_size=3, stride=1, padding=1)
self.bn1 = nn.BatchNorm2d(64)
self.conv2 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
self.bn2 = nn.BatchNorm2d(128)
self.conv3 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1)
self.bn3 = nn.BatchNorm2d(256)
self.conv4 = nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1)
self.bn4 = nn.BatchNorm2d(512)
self.conv5 = nn.Conv2d(512, 1024, kernel_size=3, stride=1, padding=1)
self.bn5 = nn.BatchNorm2d(1024)
self.upconv6 = nn.ConvTranspose2d(1024, 512, kernel_size=2, stride=2)
self.conv6 = nn.Conv2d(1024, 512, kernel_size=3, stride=1, padding=1)
self.bn6 = nn.BatchNorm2d(512)
self.upconv7 = nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2)
self.conv7 = nn.Conv2d(512, 256, kernel_size=3, stride=1, padding=1)
self.bn7 = nn.BatchNorm2d(256)
self.upconv8 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2)
self.conv8 = nn.Conv2d(256, 128, kernel_size=3, stride=1, padding=1)
self.bn8 = nn.BatchNorm2d(128)
self.upconv9 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2)
self.conv9 = nn.Conv2d(128, 64, kernel_size=3, stride=1, padding=1)
self.bn9 = nn.BatchNorm2d(64)
self.conv10 = nn.Conv2d(64, out_channels, kernel_size=1)
def forward(self, x):
# Downsample
x1 = F.relu(self.bn1(self.conv1(x)))
x2 = F.relu(self.bn2(self.conv2(x1)))
x3 = F.relu(self.bn3(self.conv3(x2)))
x4 = F.relu(self.bn4(self.conv4(x3)))
x5 = F.relu(self.bn5(self.conv5(x4)))
# Upsample
x = F.relu(self.bn6(self.conv6(F.dropout2d(x5, p=0.5))))
x = self.upconv6(x)
x = torch.cat([x, x4], dim=1)
x = F.relu(self.bn7(self.conv7(F.dropout2d(x, p=0.5))))
x = self.upconv7(x)
x = torch.cat([x, x3], dim=1)
x = F.relu(self.bn8(self.conv8(F.dropout2d(x, p=0.5))))
x = self.upconv8(x)
x = torch.cat([x, x2], dim=1)
x = F.relu(self.bn9(self.conv9(F.dropout2d(x, p=0.5))))
x = self.upconv9(x)
x = torch.cat([x, x1], dim=1)
x = self.conv10(x)
return x
```
您可以使用此代码来创建一个名为`UNet`的UNet模型。在训练过程中,您可以使用像交叉熵之类的损失函数和像Adam之类的优化器来训练模型。
阅读全文