ngpus_per_node = torch.cuda.device_count() if distributed: dist.init_process_group(backend="nccl") local_rank = int(os.environ["LOCAL_RANK"]) rank = int(os.environ["RANK"]) device = torch.device("cuda", local_rank) if local_rank == 0: print(f"[{os.getpid()}] (rank = {rank}, local_rank = {local_rank}) training...") print("Gpu Device Count : ", ngpus_per_node) else: device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') local_rank = 0 rank = 0
时间: 2023-06-14 10:05:44 浏览: 252
这段代码主要是用于分布式训练的,首先会获取当前设备中 CUDA 设备的数量,然后如果需要进行分布式训练,就会使用 `dist.init_process_group` 函数初始化分布式训练环境,使用 `os.environ` 获取当前进程的 `LOCAL_RANK` 和 `RANK`,并将设备设置为当前进程的 CUDA 设备。如果不需要进行分布式训练,则将设备设置为 CUDA 设备(如果可用),否则设置为 CPU 设备,并将 `local_rank` 和 `rank` 设置为 0。最后,如果当前进程是主进程(即 `local_rank` 为 0),则输出当前进程的信息和 CUDA 设备的数量。
相关问题
if distributed: dist.init_process_group(backend="nccl") local_rank = int(os.environ["LOCAL_RANK"]) rank = int(os.environ["RANK"]) device = torch.device("cuda", local_rank) if local_rank == 0: print(f"[{os.getpid()}] (rank = {rank}, local_rank = {local_rank}) training...") print("Gpu Device Count : ", ngpus_per_node) else: device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') local_rank = 0 rank = 0
这段代码是用于分布式训练的。首先通过判断`distributed`变量是否为True,来确定是否启动分布式训练。如果是分布式训练,则调用`dist.init_process_group`函数初始化进程组,指定使用NCCL作为后端通信库,用于多GPU之间的通信。然后获取本地进程的rank和local_rank,在分布式训练中rank代表全局进程的编号,local_rank代表本地进程的编号。接下来根据`local_rank`获取当前进程使用的GPU设备,并打印相关信息。如果不是分布式训练,则默认使用cpu设备。
检查以下代码:def main(opt): # Checks if RANK in {-1, 0}: print_args(vars(opt)) check_git_status() check_requirements() # DDP mode device = select_device(opt.device, batch_size=opt.batch_size) if LOCAL_RANK != -1: assert opt.batch_size != -1, 'AutoBatch is coming soon for classification, please pass a valid --batch-size' assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE' assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command' torch.cuda.set_device(LOCAL_RANK) device = torch.device('cuda', LOCAL_RANK) dist.init_process_group(backend='nccl' if dist.is_nccl_available() else 'gloo') # Parameters opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok) # increment run # Train train(opt, device)
这段代码主要是一个 Python 脚本的入口函数,包含以下功能:
1. 检查当前的进程是否为主进程,如果是,则打印参数,并检查 Git 状态和依赖库是否满足要求;
2. 选择设备,并在分布式训练模式下初始化进程组;
3. 设置保存模型的路径;
4. 调用 `train` 函数进行训练。
需要注意的几点:
1. `RANK` 和 `LOCAL_RANK` 都是来自于 `torch.distributed` 库,用于分布式训练中进程的标识;
2. `WORLD_SIZE` 是指分布式训练中进程的总数;
3. `select_device` 函数用于选择运行设备,可以根据参数指定使用 CPU 或 GPU,同时也会自动处理 GPU 数量不足的情况;
4. `increment_path` 函数用于为保存模型的路径添加一个后缀,避免新模型覆盖旧模型;
5. `train` 函数是实际的训练过程,需要传入参数 `opt` 和设备 `device`。
阅读全文