stm32f103c8t6 IIC端口怎么接lcd1602

时间: 2023-09-21 18:05:38 浏览: 126
要使用STM32F103C8T6的I2C端口来驱动LCD1602,需要接线如下: 1. 将LCD1602的VSS引脚接地,将VDD引脚接5V电源,将V0引脚接一个10K欧姆的电位器,另一端接地。 2. 将LCD1602的RS、RW、E引脚分别接到STM32F103C8T6的任意GPIO引脚上。 3. 将LCD1602的D4、D5、D6、D7引脚分别接到STM32F103C8T6的任意GPIO引脚上。 4. 将LCD1602的A和K引脚分别接到5V和地上。 5. 将STM32F103C8T6的I2C1的SCL引脚(PB6)接到LCD1602的SCL引脚上。 6. 将STM32F103C8T6的I2C1的SDA引脚(PB7)接到LCD1602的SDA引脚上。 完成上述接线后,还需要编程实现I2C通信和LCD1602显示。具体实现方法可以参考相关的资料和例程。
相关问题

stm32f103c8t6 IIC端口接lcd1602库程序

首先,你需要确保你的STM32F103C8T6芯片上有I2C总线并且你已经正确地初始化了I2C总线。接下来,你需要下载一个适合你的LCD1602的库程序,然后将其添加到你的项目中。最后,你需要根据库程序的指导,将LCD1602连接到I2C总线的正确引脚上。 以下是一个例子,演示如何使用STM32F103C8T6的I2C端口接LCD1602库程序的步骤: 1. 首先,你需要初始化I2C总线。你可以使用STM32的HAL库来完成这个任务,例如: ```c void I2C_Init(void) { hi2c.Instance = I2C1; hi2c.Init.ClockSpeed = 100000; hi2c.Init.DutyCycle = I2C_DUTYCYCLE_2; hi2c.Init.OwnAddress1 = 0; hi2c.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT; hi2c.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE; hi2c.Init.OwnAddress2 = 0; hi2c.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE; hi2c.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE; if (HAL_I2C_Init(&hi2c) != HAL_OK) { Error_Handler(); } } ``` 2. 下载一个适合你的LCD1602的库程序。这里我们以LiquidCrystal库为例。 3. 将LiquidCrystal库添加到你的项目中。你可以通过在Arduino IDE中包含库来实现这一点。 4. 连接LCD1602到I2C总线的正确引脚上。这里我们以PCF8574 I/O扩展器为例,它的I2C地址是0x27。连接如下: | PCF8574 | LCD1602 | |---------|---------| | SDA | SDA | | SCL | SCL | | VCC | VCC | | GND | GND | 5. 初始化LiquidCrystal库。你可以使用以下代码来完成这个任务: ```c #include <Wire.h> #include <LiquidCrystal_I2C.h> LiquidCrystal_I2C lcd(0x27, 16, 2); // I2C address, columns, rows void setup() { lcd.begin(); lcd.backlight(); } void loop() { lcd.setCursor(0, 0); lcd.print("Hello, world!"); delay(1000); } ``` 这就是如何使用STM32F103C8T6的I2C端口接LCD1602库程序的步骤。请注意,这只是一个例子。具体的步骤可能会因为你的LCD1602和库程序的不同而有所不同。

stm32f103c8t6 IIC端口接lcd1602具体实现程序

以下是使用STM32F103C8T6的I2C接口控制LCD1602的程序实现。 首先,需要在STM32CubeMX中配置I2C引脚和时钟,使能I2C总线。然后,使用HAL库提供的函数来控制LCD1602。 ```c #include "stm32f1xx_hal.h" #include "lcd1602.h" I2C_HandleTypeDef hi2c1; void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_I2C1_Init(void); int main(void) { HAL_Init(); SystemClock_Config(); MX_GPIO_Init(); MX_I2C1_Init(); lcd1602_init(&hi2c1); lcd1602_write_string(&hi2c1, "Hello, world!"); while (1) { } } void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) { Error_Handler(); } } static void MX_I2C1_Init(void) { hi2c1.Instance = I2C1; hi2c1.Init.ClockSpeed = 100000; hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2; hi2c1.Init.OwnAddress1 = 0; hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT; hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE; hi2c1.Init.OwnAddress2 = 0; hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE; hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE; if (HAL_I2C_Init(&hi2c1) != HAL_OK) { Error_Handler(); } } static void MX_GPIO_Init(void) { __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); } void HAL_Delay(uint32_t Delay) { uint32_t tickstart = HAL_GetTick(); while ((HAL_GetTick() - tickstart) < Delay) { } } void Error_Handler(void) { __disable_irq(); while (1) { } } ``` lcd1602.h: ```c #ifndef __LCD1602_H__ #define __LCD1602_H__ #include "stm32f1xx_hal.h" #define LCD1602_ADDRESS 0x4E void lcd1602_init(I2C_HandleTypeDef *hi2c); void lcd1602_write_string(I2C_HandleTypeDef *hi2c, char *string); #endif ``` lcd1602.c: ```c #include "lcd1602.h" void lcd1602_init(I2C_HandleTypeDef *hi2c) { uint8_t init_data[] = {0x38, 0x08, 0x01, 0x06, 0x0C}; HAL_I2C_Master_Transmit(hi2c, LCD1602_ADDRESS, init_data, sizeof(init_data), HAL_MAX_DELAY); HAL_Delay(100); } void lcd1602_write_string(I2C_HandleTypeDef *hi2c, char *string) { uint8_t data[2]; while (*string) { data[0] = 0x40; data[1] = *string++; HAL_I2C_Master_Transmit(hi2c, LCD1602_ADDRESS, data, sizeof(data), HAL_MAX_DELAY); } } ``` 这个程序使用I2C总线向LCD1602发送数据,通过初始化LCD1602以及写入字符串的函数来实现控制LCD1602。

相关推荐

最新推荐

recommend-type

MAX30102心率血氧传感器在STM32F103C8T6上的应用

标准库与HAL库,用IO口模拟IIC void I2C_GPIO_Config(void) //IIC引脚初始化 { #ifdef STDLIB GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd&#40;RCC_APB2Periph_GPIOB , ENABLE&#41;; GPIO_...
recommend-type

SecondactivityMainActivity.java

SecondactivityMainActivity.java
recommend-type

BSC绩效考核指标汇总 (2).docx

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】Flask中的会话与用户管理

![python网络编程合集](https://media.geeksforgeeks.org/wp-content/uploads/20201021201514/pythonrequests.PNG) # 2.1 用户注册和登录 ### 2.1.1 用户注册表单的设计和验证 用户注册表单是用户创建帐户的第一步,因此至关重要。它应该简单易用,同时收集必要的用户信息。 * **字段设计:**表单应包含必要的字段,如用户名、电子邮件和密码。 * **验证:**表单应验证字段的格式和有效性,例如电子邮件地址的格式和密码的强度。 * **错误处理:**表单应优雅地处理验证错误,并提供清晰的错误消
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

BSC资料.pdf

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【进阶】Flask中的请求处理

![【进阶】Flask中的请求处理](https://img-blog.csdnimg.cn/20200422085130952.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3pqMTEzMTE5MDQyNQ==,size_16,color_FFFFFF,t_70) # 1. Flask请求处理概述** Flask是一个轻量级的Web框架,它提供了一个简洁且灵活的接口来处理HTTP请求。在Flask中,请求处理是一个核心概念,它允许
recommend-type

transformer模型对话

Transformer模型是一种基于自注意力机制的深度学习架构,最初由Google团队在2017年的论文《Attention is All You Need》中提出,主要用于自然语言处理任务,如机器翻译和文本生成。Transformer完全摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN),转而采用全连接的方式处理序列数据,这使得它能够并行计算,极大地提高了训练速度。 在对话系统中,Transformer模型通过编码器-解码器结构工作。编码器将输入序列转化为固定长度的上下文向量,而解码器则根据这些向量逐步生成响应,每一步都通过自注意力机制关注到输入序列的所有部分,这使得模型能够捕捉到