使用uart.write接收的数据能否删除

时间: 2024-04-30 16:19:36 浏览: 97
如果你想删除使用uart.write接收到的数据,你需要使用一个缓冲区来存储数据,并且在读取完数据后对缓冲区进行清除。具体实现可以参考下面的示例代码: ```python import machine uart = machine.UART(0, 115200) buf = bytearray(100) while True: # 读取数据 size = uart.readinto(buf) if size > 0: # 处理数据 data = buf[:size] print(data) # 清空缓冲区 buf[:size] = bytearray(size) ``` 在这个示例中,我们定义了一个长度为100的缓冲区`buf`来存储读取到的数据。在每次读取数据后,我们先判断是否读取到了数据,如果有数据就将其赋值给`data`变量,并打印出来。然后我们使用`buf[:size] = bytearray(size)`来清空缓冲区,将已经读取过的数据清除,以便下一次读取。
相关问题

You are required to write a C program to: • Initialize GPIO peripherals • Initialise UART peripheral for receiving ASCII characters ‘A’ to ‘Z’ at baud 9600 • Initialise an internal array to hold 10 characters with head and tail: CharBuff • Repeat the following:o When data is received on the serial communication port, read ASCII character X, o If received character X is a capital letter add it to CharBuff, else ignore. o While CharBuff is not empty, transmit the morse code of the oldest stored character by blinking the LED (code provided for you). o When CharBuff is full, disable UART RX. o If UART RX is disabled, pushing the button P_B1 will activate it; otherwise, pushing the button does not affect your programme. You are recommended to use interrupt to control UART receiving data and coordinate the operation between CharBuff and P_LD2. 在我的代码基础上完成以上任务#include <platform.h> #include <gpio.h> #include "delay.h" #include "uart.h" #include <stm32f4xx.h> /* ***************NOTE*********************** YOU CAN USE THE IN-UILT FUNCTION delay_ms(HOW_LONG) TO CAUSE A DELAY OF HOW_LONG MILLI SECONDS ******************************************* */ //placeholder /*void uart_rx_isr(uint8_t rx){ }*/ #define MAX 10 int uart_rx_enabled = 1; char CharBuff[MAX]; int head = 0; int tail = 0; int is_full() { return (tail + 1) % MAX == head; } int is_empty() { return head == tail; } void add_to_buffer(char c) { if (!is_full()) { CharBuff[tail] = c; tail = (tail + 1) % MAX; } else { uart_rx_enabled = 0; //uart_disable(); } } void uart_rx_isr(uint8_t c){ if (c >= 'A' && c <= 'Z') { if (!is_full()) { CharBuff[tail] = c; tail = (tail + 1) % MAX; } else { uart_rx_enabled = 0; //uart_disable(); } } } char remove_from_buffer() { char c = CharBuff[head]; head = (head + 1) % MAX; if (uart_rx_enabled == 0 && !is_full()) {//The buffer is not full after removing a char uart_rx_enabled = 1;//enable the Uart RX uart_enable(); } return c; } int main(void) { // Initialise GPIO. gpio_set_mode(P_LD2, Output); gpio_set_mode(P_B1, PullUp); // hardware/peripheral initialisation uart_init(9600); uart_enable(); uart_set_rx_callback(uart_rx_isr);//This callback function is triggered when data is received through the serial port while(1){ if(!is_empty()){ gpio_set(P_LD2, LED_ON); char c = remove_from_buffer(); } } } // ******* ARM University Program Copyright © ARM Ltd 2016 ****************** // ******* Queen Mary University of London Copyright Matthew Tang 2021 ******

以下是完成任务的代码,其中添加了相应的注释说明: ``` #include <platform.h> #include <gpio.h> #include "delay.h" #include "uart.h" #include <stm32f4xx.h> #define MAX 10 int uart_rx_enabled = 1; char CharBuff[MAX]; int head = 0; int tail = 0; int is_full() { return (tail + 1) % MAX == head; } int is_empty() { return head == tail; } void add_to_buffer(char c) { if (!is_full()) { CharBuff[tail] = c; tail = (tail + 1) % MAX; } else { uart_rx_enabled = 0; // Disable UART RX if buffer is full } } void uart_rx_isr(uint8_t c) { if (c >= 'A' && c <= 'Z') { // Only add capital letters to the buffer add_to_buffer(c); } } char remove_from_buffer() { char c = CharBuff[head]; head = (head + 1) % MAX; if (uart_rx_enabled == 0 && !is_full()) { // If buffer is not full after removing a character, re-enable UART RX uart_rx_enabled = 1; uart_enable(); } return c; } void blink_led(char c) { int i; for (i = 0; i < c - 'A' + 1; i++) { // Blink LED for each letter in Morse code gpio_set(P_LD2, LED_ON); delay_ms(200); gpio_set(P_LD2, LED_OFF); delay_ms(200); } } int main(void) { // Initialise GPIO gpio_set_mode(P_LD2, Output); gpio_set_mode(P_B1, PullUp); // Hardware/peripheral initialisation uart_init(9600); uart_enable(); uart_set_rx_callback(uart_rx_isr); while (1) { if (!is_empty()) { char c = remove_from_buffer(); blink_led(c); } if (gpio_get(P_B1) == 0 && uart_rx_enabled == 0) { // If button is pushed and UART RX is disabled, re-enable UART RX uart_rx_enabled = 1; uart_enable(); } } } ``` 该程序初始化GPIO和UART硬件模块,并初始化一个长度为10的字符数组CharBuff,用于存储接收到的大写字母。当从串行通信端口接收到数据时,如果接收到的字符是大写字母,则将其添加到CharBuff中。如果CharBuff已满,程序将禁用UART RX以防止缓冲区溢出。当从CharBuff中删除字符时,程序会将最早添加的字符转换为Morse代码,并通过LED闪烁的方式进行传输。如果UART RX被禁用且CharBuff未满,则当按下按钮P_B1时,程序将重新启用UART RX。

解读linux3.4内核文件serial_core.c的代码

serial_core.c是Linux内核中的一个串口驱动核心文件,主要负责串口设备的初始化、读写和中断处理等操作。以下是该文件的代码解读: 1. 头文件包含 ``` #include <linux/kernel.h> #include <linux/module.h> #include <linux/device.h> #include <linux/init.h> #include <linux/serial.h> #include <linux/tty.h> #include <linux/tty_flip.h> #include <linux/console.h> #include <linux/console_struct.h> #include <linux/serial_core.h> #include <linux/serial_reg.h> #include <linux/io.h> #include <linux/spinlock.h> #include <linux/interrupt.h> #include <linux/wait.h> #include <linux/dmaengine.h> #include <linux/dma-mapping.h> ``` 该文件包含了一些常用的头文件,如内核头文件、串口头文件、中断头文件等。 2. 宏定义 ``` #define serial_outp(port, value) writeb((value), (port)) #define serial_inp(port) readb(port) #define serial_outw(port, value) writew((value), (port)) #define serial_inw(port) readw(port) #define serial_outl(port, value) writel((value), (port)) #define serial_inl(port) readl(port) ``` 这些宏定义了读写串口寄存器的操作,通过调用内核提供的读写函数实现。 3. 结构体定义 ``` struct uart_port { spinlock_t lock; /* 锁 */ void __iomem *membase; /* MMIO基地址 */ unsigned char *mapbase; /* 端口映射基地址 */ unsigned char *membase_addr; /* MMIO地址 */ unsigned char *mapbase_addr; /* 端口映射地址 */ unsigned int iotype:2; /* 端口类型 */ unsigned int irq; /* 中断号 */ unsigned int uartclk; /* 时钟 */ unsigned int fifosize; /* FIFO大小 */ unsigned int flags; /* 标志 */ unsigned int regshift; /* 寄存器位移 */ unsigned int iobase; /* 端口基地址 */ unsigned int iolen; /* 端口长度 */ unsigned int regtype:2; /* 寄存器类型 */ unsigned int uartclk_high; /* 高位时钟 */ struct uart_state *state; /* 串口状态 */ struct uart_ops *ops; /* 串口操作 */ struct uart_driver *uartclk_reg; /* 时钟寄存器 */ struct console *cons; /* 控制台 */ struct device *dev; /* 设备 */ struct dma_chan *dma; /* DMA通道 */ struct dma_async_tx_descriptor *tx_dma; /* DMA传输描述符 */ struct dma_async_tx_descriptor *rx_dma; /* DMA传输描述符 */ unsigned int capabilities; /* 串口功能 */ unsigned int type; /* 串口类型 */ unsigned int line; /* 串口线路 */ unsigned int uartclk_rate; /* 时钟频率 */ struct ktermios *termios; /* 终端参数 */ struct ktermios *gpios; /* GPIO配置 */ struct delayed_work work; /* 延迟工作队列 */ }; ``` 该结构体定义了串口端口的各种信息,如锁、基地址、中断号、时钟、标志等。 4. 函数定义 该文件包含了众多函数定义,具体解读如下: (1) uart_get_baud_rate()函数 ``` unsigned int uart_get_baud_rate(struct uart_port *port, struct ktermios *termios, struct ktermios *old, unsigned int min, unsigned int max) ``` 该函数用于获取波特率,根据终端参数计算波特率并返回。 (2) uart_update_timeout()函数 ``` void uart_update_timeout(struct uart_port *port, unsigned int cflag) ``` 该函数用于更新串口超时时间,根据终端参数计算超时时间并更新。 (3) uart_register_driver()函数 ``` int uart_register_driver(struct uart_driver *uart_drv) ``` 该函数用于注册串口驱动,将驱动加入到内核串口驱动链表中。 (4) uart_unregister_driver()函数 ``` void uart_unregister_driver(struct uart_driver *uart_drv) ``` 该函数用于注销串口驱动,从内核串口驱动链表中移除。 (5) uart_add_one_port()函数 ``` int uart_add_one_port(struct uart_driver *drv, struct uart_port *port) ``` 该函数用于添加一个串口端口,将其加入到驱动的端口列表中。 (6) uart_remove_one_port()函数 ``` void uart_remove_one_port(struct uart_driver *drv, struct uart_port *port) ``` 该函数用于移除一个串口端口,从驱动的端口列表中删除。 (7) uart_suspend_port()函数 ``` int uart_suspend_port(struct uart_driver *drv, struct uart_port *port) ``` 该函数用于挂起一个串口端口,暂停其读写操作。 (8) uart_resume_port()函数 ``` int uart_resume_port(struct uart_driver *drv, struct uart_port *port) ``` 该函数用于恢复一个串口端口,重新开始读写操作。 (9) uart_change_speed()函数 ``` void uart_change_speed(struct uart_port *port, unsigned int new_speed) ``` 该函数用于改变串口的波特率,重新计算超时时间。 (10) uart_handle_sysrq_char()函数 ``` int uart_handle_sysrq_char(struct uart_port *port, unsigned int ch) ``` 该函数用于处理系统请求字符,将其发送到串口设备中。 (11) uart_insert_char()函数 ``` void uart_insert_char(struct uart_port *port, unsigned int status, unsigned int overrun, unsigned int ch, unsigned int flag) ``` 该函数用于向串口设备中插入一个字符,处理溢出和错误等情况。 (12) uart_write_wakeup()函数 ``` void uart_write_wakeup(struct uart_port *port) ``` 该函数用于唤醒串口设备的写操作,将等待的进程唤醒。 (13) uart_flush_buffer()函数 ``` void uart_flush_buffer(struct uart_port *port) ``` 该函数用于刷新串口设备的缓冲区,清空缓冲区中的数据。 (14) uart_start()函数 ``` void uart_start(struct uart_port *port) ``` 该函数用于启动串口设备的读操作,开始接收数据。 (15) uart_stop()函数 ``` void uart_stop(struct uart_port *port) ``` 该函数用于停止串口设备的读操作,停止接收数据。 (16) uart_shutdown()函数 ``` void uart_shutdown(struct uart_port *port) ``` 该函数用于关闭串口设备,释放资源。 (17) uart_handle_cts_change()函数 ``` void uart_handle_cts_change(struct uart_port *port, unsigned int status) ``` 该函数用于处理CTS(清除发送)信号的变化,控制发送操作。 (18) uart_handle_dcd_change()函数 ``` void uart_handle_dcd_change(struct uart_port *port, unsigned int status) ``` 该函数用于处理DCD(数据载波检测)信号的变化,控制读操作。 (19) uart_handle_dsr_change()函数 ``` void uart_handle_dsr_change(struct uart_port *port, unsigned int status) ``` 该函数用于处理DSR(数据终端就绪)信号的变化,控制读操作。 (20) uart_get_stats()函数 ``` void uart_get_stats(struct uart_port *port, struct uart_icount *icount) ``` 该函数用于获取串口设备的统计信息,包括接收、发送、错误等信息。 5. 总结 serial_core.c是Linux内核中的一个串口驱动核心文件,包含了众多的函数和结构体定义,实现了串口设备的初始化、读写、中断处理等操作。对于Linux内核开发人员来说,了解该文件的代码实现,对于理解串口驱动的原理和实现具有重要意义。
阅读全文

相关推荐

最新推荐

recommend-type

Python使用线程来接收串口数据的示例

在Python编程中,有时我们需要实时地从串口(Serial Port)接收数据,特别是在处理硬件设备交互、物联网(IoT)项目或嵌入式系统通信时。为了实现这一目标,我们可以利用多线程技术来确保程序的高效运行。本文将详细...
recommend-type

MiniGui业务开发基础培训-htk

MiniGui业务开发基础培训-htk
recommend-type

BottleJS快速入门:演示JavaScript依赖注入优势

资源摘要信息:"BottleJS是一个轻量级的依赖项注入容器,用于JavaScript项目中,旨在减少导入依赖文件的数量并优化代码结构。该项目展示BottleJS在前后端的应用,并通过REST API演示其功能。" BottleJS Playgound 概述: BottleJS Playgound 是一个旨在演示如何在JavaScript项目中应用BottleJS的项目。BottleJS被描述为JavaScript世界中的Autofac,它是依赖项注入(DI)容器的一种实现,用于管理对象的创建和生命周期。 依赖项注入(DI)的基本概念: 依赖项注入是一种设计模式,允许将对象的依赖关系从其创建和维护的代码中分离出来。通过这种方式,对象不会直接负责创建或查找其依赖项,而是由外部容器(如BottleJS)来提供这些依赖项。这样做的好处是降低了模块间的耦合,提高了代码的可测试性和可维护性。 BottleJS 的主要特点: - 轻量级:BottleJS的设计目标是尽可能简洁,不引入不必要的复杂性。 - 易于使用:通过定义服务和依赖关系,BottleJS使得开发者能够轻松地管理大型项目中的依赖关系。 - 适合前后端:虽然BottleJS最初可能是为前端设计的,但它也适用于后端JavaScript项目,如Node.js应用程序。 项目结构说明: 该仓库的src目录下包含两个子目录:sans-bottle和bottle。 - sans-bottle目录展示了传统的方式,即直接导入依赖并手动协调各个部分之间的依赖关系。 - bottle目录则使用了BottleJS来管理依赖关系,其中bottle.js文件负责定义服务和依赖关系,为项目提供一个集中的依赖关系源。 REST API 端点演示: 为了演示BottleJS的功能,该项目实现了几个简单的REST API端点。 - GET /users:获取用户列表。 - GET /users/{id}:通过给定的ID(范围0-11)获取特定用户信息。 主要区别在用户路由文件: 该演示的亮点在于用户路由文件中,通过BottleJS实现依赖关系的注入,我们可以看到代码的组织和结构比传统方式更加清晰和简洁。 BottleJS 和其他依赖项注入容器的比较: - BottleJS相比其他依赖项注入容器如InversifyJS等,可能更轻量级,专注于提供基础的依赖项管理和注入功能。 - 它的设计更加直接,易于理解和使用,尤其适合小型至中型的项目。 - 对于需要高度解耦和模块化的大规模应用,可能需要考虑BottleJS以外的解决方案,以提供更多的功能和灵活性。 在JavaScript项目中应用依赖项注入的优势: - 可维护性:通过集中管理依赖关系,可以更容易地理解和修改应用的结构。 - 可测试性:依赖项的注入使得创建用于测试的mock依赖关系变得简单,从而方便单元测试的编写。 - 模块化:依赖项注入鼓励了更好的模块化实践,因为模块不需关心依赖的来源,只需负责实现其定义的接口。 - 解耦:模块之间的依赖关系被清晰地定义和管理,减少了直接耦合。 总结: BottleJS Playgound 项目提供了一个生动的案例,说明了如何在JavaScript项目中利用依赖项注入模式改善代码质量。通过该项目,开发者可以更深入地了解BottleJS的工作原理,以及如何将这一工具应用于自己的项目中,从而提高代码的可维护性、可测试性和模块化程度。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【版本控制】:R语言项目中Git与GitHub的高效应用

![【版本控制】:R语言项目中Git与GitHub的高效应用](https://opengraph.githubassets.com/2abf032294b9f2a415ddea58f5fde6fcb018b57c719dfc371bf792c251943984/isaacs/github/issues/37) # 1. 版本控制与R语言的融合 在信息技术飞速发展的今天,版本控制已成为软件开发和数据分析中不可或缺的环节。特别是对于数据科学的主流语言R语言,版本控制不仅帮助我们追踪数据处理的历史,还加强了代码共享与协作开发的效率。R语言与版本控制系统的融合,特别是与Git的结合使用,为R语言项
recommend-type

RT-DETR如何实现在实时目标检测中既保持精度又降低计算成本?请提供其技术实现的详细说明。

为了理解RT-DETR如何在实时目标检测中保持精度并降低计算成本,我们必须深入研究其架构优化和技术细节。RT-DETR通过融合CNN与Transformer的优势,提出了一种混合编码器结构,这种结构采用了尺度内交互(AIFI)和跨尺度融合(CCFM)策略来提取和融合多尺度图像特征,这些特征能够提供丰富的视觉上下文信息,从而提升了模型的检测精度。 参考资源链接:[RT-DETR:实时目标检测中的新胜者](https://wenku.csdn.net/doc/1ehyj4a8z2?spm=1055.2569.3001.10343) 在编码器阶段,RT-DETR使用主干网络提取图像特征,然后通过
recommend-type

vConsole插件使用教程:输出与复制日志文件

资源摘要信息:"vconsole-outputlog-plugin是一个JavaScript插件,它能够在vConsole环境中输出日志文件,并且支持将日志复制到剪贴板或下载。vConsole是一个轻量级、可扩展的前端控制台,通常用于移动端网页的调试。该插件的安装依赖于npm,即Node.js的包管理工具。安装完成后,通过引入vConsole和vConsoleOutputLogsPlugin来初始化插件,之后即可通过vConsole输出的console打印信息进行日志的复制或下载操作。这在进行移动端调试时特别有用,可以帮助开发者快速获取和分享调试信息。" 知识点详细说明: 1. vConsole环境: vConsole是一个专为移动设备设计的前端调试工具。它模拟了桌面浏览器的控制台,并添加了网络请求、元素选择、存储查看等功能。vConsole可以独立于原生控制台使用,提供了一个更为便捷的方式来监控和调试Web页面。 2. 日志输出插件: vconsole-outputlog-plugin是一个扩展插件,它增强了vConsole的功能,使得开发者不仅能够在vConsole中查看日志,还能将这些日志方便地输出、复制和下载。这样的功能在移动设备上尤为有用,因为移动设备的控制台通常不易于使用。 3. npm安装: npm(Node Package Manager)是Node.js的包管理器,它允许用户下载、安装、管理各种Node.js的包或库。通过npm可以轻松地安装vconsole-outputlog-plugin插件,只需在命令行执行`npm install vconsole-outputlog-plugin`即可。 4. 插件引入和使用: - 首先创建一个vConsole实例对象。 - 然后创建vConsoleOutputLogsPlugin对象,它需要一个vConsole实例作为参数。 - 使用vConsole对象的实例,就可以在其中执行console命令,将日志信息输出到vConsole中。 - 插件随后能够捕获这些日志信息,并提供复制到剪贴板或下载的功能。 5. 日志操作: - 复制到剪贴板:在vConsole界面中,通常会有“复制”按钮,点击即可将日志信息复制到剪贴板,开发者可以粘贴到其他地方进行进一步分析或分享。 - 下载日志文件:在某些情况下,可能需要将日志信息保存为文件,以便离线查看或作为报告的一部分。vconsole-outputlog-plugin提供了将日志保存为文件并下载的功能。 6. JavaScript标签: 该插件是使用JavaScript编写的,因此它与JavaScript紧密相关。JavaScript是一种脚本语言,广泛用于网页的交互式内容开发。此插件的开发和使用都需要一定的JavaScript知识,包括对ES6(ECMAScript 2015)版本规范的理解和应用。 7. 压缩包子文件: vconsole-outputlog-plugin-main文件名可能是指该插件的压缩包或分发版本,通常包含插件的源代码、文档和可能的配置文件。开发者可以通过该文件名在项目中正确地引用和使用插件。 通过掌握这些知识点,开发者可以有效地在vConsole环境中使用vconsole-outputlog-plugin插件,提高移动端网页的调试效率和体验。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【自然语言处理】:R语言文本挖掘与情感分析入门指南

![【自然语言处理】:R语言文本挖掘与情感分析入门指南](https://wisdomml.in/wp-content/uploads/2022/08/tokenizer-1024x512.jpg) # 1. 自然语言处理和R语言基础 自然语言处理(NLP)是计算机科学和人工智能领域的一个分支,旨在让计算机能够理解人类语言。随着大数据时代的到来,NLP在文本分析、信息检索、语音识别等方面的应用变得越来越广泛。R语言作为一种开源的统计编程语言,具有强大的数据处理和可视化功能,它在NLP领域的应用也越来越受到重视。本章将带领读者了解自然语言处理的基础知识,以及R语言在处理语言数据时的基本语法和功
recommend-type

智能衣柜的设计中是如何应用嵌入式系统与物联网技术实现个性化定制的?

智能衣柜作为家居智能化的重要分支,其设计理念的核心在于利用先进的嵌入式系统和物联网技术来优化用户体验。嵌入式系统作为智能衣柜的“大脑”,承担着数据处理、存储和决策的角色。通过在衣柜中集成传感器、微控制器和通信模块,嵌入式系统能够实现对衣物存储环境的实时监控,并根据衣物类型、使用频率等因素智能分配存储空间。 参考资源链接:[智能衣柜:现状、发展趋势与未来创新](https://wenku.csdn.net/doc/uty55wcr9r?spm=1055.2569.3001.10343) 物联网技术的应用,则使智能衣柜能够通过网络连接到用户的智能设备,如智能手机或平板电脑,实现远程监控和管理。