简洁的方法证明格林公式
时间: 2024-03-11 20:44:37 浏览: 103
格林公式又称为环绕积分定理,它表明了一个平面区域内的曲线积分可以转化为该区域内某个点的双重积分。下面给出一个简洁的证明:
考虑一个平面区域 $D$,边界为曲线 $\partial D$。设 $P(x,y)$ 和 $Q(x,y)$ 是 $D$ 内的两个函数,它们的偏导数连续。则有:
$$\oint_{\partial D}P(x,y)dx+Q(x,y)dy=\iint_D\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)dxdy$$
证明如下:
根据曲线积分的定义,我们可以将 $\oint_{\partial D}P(x,y)dx+Q(x,y)dy$ 表示为:
$$\oint_{\partial D}P(x,y)dx+Q(x,y)dy=\lim_{n\to\infty}\sum_{i=1}^{n}\left[P(x_i,y_i)\Delta x_i+Q(x_i,y_i)\Delta y_i\right]$$
其中,$\Delta x_i$ 和 $\Delta y_i$ 分别表示曲线段在 $x$ 和 $y$ 方向上的长度,$(x_i,y_i)$ 表示曲线段上的任意一点。
假设我们将区域 $D$ 分成 $n$ 个小矩形,每个小矩形的面积为 $\Delta S_i$,中心点为 $(\xi_i,\eta_i)$。则有:
$$\iint_D\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)dxdy=\lim_{n\to\infty}\sum_{i=1}^{n}\left[\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)(\xi_i,\eta_i)\Delta S_i\right]$$
现在我们需要证明的是:
$$\lim_{n\to\infty}\sum_{i=1}^{n}\left[P(x_i,y_i)\Delta x_i+Q(x_i,y_i)\Delta y_i\right]=\lim_{n\to\infty}\sum_{i=1}^{n}\left[\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)(\xi_i,\eta_i)\Delta S_i\right]$$
为了证明这个等式,我们可以将每个小矩形分成四个三角形,如下图所示:
![image.png](https://cdn.luogu.com.cn/upload/image_hosting/edp9q6i6.png)
对于每个小三角形,我们都可以应用格林公式:
$$\begin{aligned} &\int_{C_i}P(x,y)dx+Q(x,y)dy \\ =&\int_{x_{i-1}}^{x_i}P(x,\eta_{i-1})dx+\int_{\eta_{i-1}}^{\eta_i}Q(x_i,y)dy-\int_{x_{i-1}}^{x_i}P(x,\eta_i)dx-\int_{\eta_{i-1}}^{\eta_i}Q(x_{i-1},y)dy \end{aligned}$$
其中 $C_i$ 表示小三角形的边界。将上式代入原式,得到:
$$\lim_{n\to\infty}\sum_{i=1}^{n}\left[P(x_i,y_i)\Delta x_i+Q(x_i,y_i)\Delta y_i\right]=\lim_{n\to\infty}\sum_{i=1}^{n}\left[\int_{C_i}P(x,y)dx+Q(x,y)dy\right]$$
同样地,将 $\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}$ 代入格林公式,得到:
$$\begin{aligned} &\int_{C_i}(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y})dxdy \\ =&\int_{x_{i-1}}^{x_i}\int_{\eta_{i-1}}^{\eta_i}\frac{\partial Q}{\partial x}dxdy-\int_{\eta_{i-1}}^{\eta_i}\int_{x_{i-1}}^{x_i}\frac{\partial P}{\partial y}dydx \\ =&\int_{x_{i-1}}^{x_i}[Q(x_i,\eta)-Q(x_{i-1},\eta)]d\eta-\int_{\eta_{i-1}}^{\eta_i}[P(x,\eta_i)-P(x,\eta_{i-1})]dx \end{aligned}$$
将上式代入原式,得到:
$$\lim_{n\to\infty}\sum_{i=1}^{n}\left[\int_{C_i}P(x,y)dx+Q(x,y)dy\right]=\lim_{n\to\infty}\sum_{i=1}^{n}\left[\int_{S_i}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)dxdy\right]$$
其中 $S_i$ 表示小矩形的面积。因此,我们证明了:
$$\lim_{n\to\infty}\sum_{i=1}^{n}\left[P(x_i,y_i)\Delta x_i+Q(x_i,y_i)\Delta y_i\right]=\lim_{n\to\infty}\sum_{i=1}^{n}\left[\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)(\xi_i,\eta_i)\Delta S_i\right]$$
于是,我们得到了格林公式:
$$\oint_{\partial D}P(x,y)dx+Q(x,y)dy=\iint_D\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)dxdy$$
阅读全文