python用digits库adaboosting多分类
时间: 2023-09-15 13:14:48 浏览: 80
多分类-AdaBoost, 由 MATLAB 和 python 实现
使用digits库的Adaboosting算法进行多分类可以通过以下步骤实现:
1. 导入digits库和Adaboosting算法:
```python
from sklearn.ensemble import AdaBoostClassifier
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
```
2. 加载数据集并划分训练集和测试集:
```python
digits = load_digits()
X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.target, test_size=0.3, random_state=42)
```
3. 创建Adaboosting分类器并进行训练:
```python
ada_clf = AdaBoostClassifier(n_estimators=50, learning_rate=1)
ada_clf.fit(X_train, y_train)
```
4. 使用训练好的分类器进行预测:
```python
predictions = ada_clf.predict(X_test)
```
完整代码如下:
```python
from sklearn.ensemble import AdaBoostClassifier
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
digits = load_digits()
X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.target, test_size=0.3, random_state=42)
ada_clf = AdaBoostClassifier(n_estimators=50, learning_rate=1)
ada_clf.fit(X_train, y_train)
predictions = ada_clf.predict(X_test)
```
这样就完成了使用digits库的Adaboosting算法进行多分类的任务。
阅读全文