python用digits库进行adaboosting多分类,adaboosting不用sklearn库里的函数,并算出测试后的准确率
时间: 2024-03-26 21:34:22 浏览: 108
在手动实现`AdaBoost`算法之后,我们可以使用`accuracy_score`函数计算测试集的准确率:
```python
from sklearn.metrics import accuracy_score
digits = load_digits()
X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.target, test_size=0.3, random_state=42)
adaboost = AdaBoost(n_estimators=50, learning_rate=1)
adaboost.fit(X_train, y_train)
predictions = adaboost.predict(X_test)
accuracy = accuracy_score(y_test, predictions)
print("Accuracy:", accuracy)
```
这里我们导入了`accuracy_score`函数,通过传入真实标签和预测标签来计算准确率。最后输出测试集的准确率。
相关问题
python用digits库进行adaboosting多分类,adaboosting不用sklearn库里的函数
如果你不想使用`sklearn`库里的函数,可以手动实现`AdaBoost`算法,以下是一个简单的实现:
```python
import numpy as np
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
class AdaBoost:
def __init__(self, n_estimators=50, learning_rate=1):
self.n_estimators = n_estimators
self.learning_rate = learning_rate
self.classifiers = []
self.alphas = []
def fit(self, X, y):
m = X.shape[0]
weights = np.full(m, 1/m)
for i in range(self.n_estimators):
clf = DecisionTreeClassifier(max_depth=1)
clf.fit(X, y, sample_weight=weights)
predictions = clf.predict(X)
error_rate = np.sum(weights[predictions != y])
alpha = 0.5 * np.log((1 - error_rate) / error_rate)
self.classifiers.append(clf)
self.alphas.append(alpha)
weights *= np.exp(-alpha * y * predictions)
weights /= np.sum(weights)
def predict(self, X):
predictions = np.zeros(X.shape[0])
for clf, alpha in zip(self.classifiers, self.alphas):
predictions += alpha * clf.predict(X)
return np.sign(predictions).astype(int)
digits = load_digits()
X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.target, test_size=0.3, random_state=42)
adaboost = AdaBoost(n_estimators=50, learning_rate=1)
adaboost.fit(X_train, y_train)
predictions = adaboost.predict(X_test)
```
在这里,我们手动实现了`AdaBoost`算法的训练和预测过程。我们使用了`sklearn`库中的`load_digits`函数来加载数据集,并使用`train_test_split`函数将数据集划分为训练集和测试集。然后,我们实例化了一个`AdaBoost`类,传入了两个超参数:`n_estimators`和`learning_rate`。我们在`fit`方法中训练了多个`DecisionTreeClassifier`分类器,并更新了样本权重和分类器权重。最后,在`predict`方法中,我们将多个分类器的预测结果加权求和,并使用`sign`函数将结果转换为-1或1,然后再将其转换为0或1。
请注意,这只是一个简单的实现,可能需要更多的调整和优化才能获得更好的性能。
python用digits库adaboosting多分类
使用digits库的Adaboosting算法进行多分类可以通过以下步骤实现:
1. 导入digits库和Adaboosting算法:
```python
from sklearn.ensemble import AdaBoostClassifier
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
```
2. 加载数据集并划分训练集和测试集:
```python
digits = load_digits()
X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.target, test_size=0.3, random_state=42)
```
3. 创建Adaboosting分类器并进行训练:
```python
ada_clf = AdaBoostClassifier(n_estimators=50, learning_rate=1)
ada_clf.fit(X_train, y_train)
```
4. 使用训练好的分类器进行预测:
```python
predictions = ada_clf.predict(X_test)
```
完整代码如下:
```python
from sklearn.ensemble import AdaBoostClassifier
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
digits = load_digits()
X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.target, test_size=0.3, random_state=42)
ada_clf = AdaBoostClassifier(n_estimators=50, learning_rate=1)
ada_clf.fit(X_train, y_train)
predictions = ada_clf.predict(X_test)
```
这样就完成了使用digits库的Adaboosting算法进行多分类的任务。
阅读全文