python 使用sklearn.datasets自带数据load_digits完成以下应用:使用留出法划分数据集并使用sklearn逻辑回归完成模型训练、输出测试集模型预测结果、输出模型准确率、召回率及F1-SCORE值
时间: 2023-12-26 07:03:47 浏览: 72
好的,我可以为您解答。
首先,我们需要导入相关的库和数据集:
```python
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, recall_score, f1_score
# 导入数据集
digits = load_digits()
X = digits.data
y = digits.target
```
然后,我们可以使用留出法划分数据集:
```python
# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
```
接着,我们可以使用sklearn逻辑回归完成模型训练,并输出测试集模型预测结果:
```python
# 训练模型
lr = LogisticRegression()
lr.fit(X_train, y_train)
# 预测结果
y_pred = lr.predict(X_test)
print("模型预测结果:", y_pred)
```
然后,我们可以输出模型的准确率、召回率及F1-SCORE值:
```python
# 计算准确率
acc = accuracy_score(y_test, y_pred)
print("准确率:", acc)
# 计算召回率
recall = recall_score(y_test, y_pred, average='weighted')
print("召回率:", recall)
# 计算F1-SCORE值
f1 = f1_score(y_test, y_pred, average='weighted')
print("F1-SCORE值:", f1)
```
完整代码如下:
```python
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, recall_score, f1_score
# 导入数据集
digits = load_digits()
X = digits.data
y = digits.target
# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# 训练模型
lr = LogisticRegression()
lr.fit(X_train, y_train)
# 预测结果
y_pred = lr.predict(X_test)
print("模型预测结果:", y_pred)
# 计算准确率
acc = accuracy_score(y_test, y_pred)
print("准确率:", acc)
# 计算召回率
recall = recall_score(y_test, y_pred, average='weighted')
print("召回率:", recall)
# 计算F1-SCORE值
f1 = f1_score(y_test, y_pred, average='weighted')
print("F1-SCORE值:", f1)
```
希望能帮助到您。
阅读全文