python hadoop api
时间: 2023-07-06 17:30:17 浏览: 104
hadoop-yarn-api-python-client:Hadoop:registered:YARN API的Python客户端
Python提供了hadoop api来操作HDFS、MapReduce等,主要是通过`hadoop`包来实现。以下是使用Python hadoop api操作HDFS的示例代码:
```python
from hadoop.fs import HdfsClient
client = HdfsClient(host='your_hdfs_host', port=your_hdfs_port)
client.makedirs('/path/on/hdfs')
client.upload('/path/on/hdfs/file.txt', '/path/on/local/file.txt')
client.download('/path/on/hdfs/file.txt', '/path/on/local/file.txt')
client.delete('/path/on/hdfs/file.txt')
```
其中,`your_hdfs_host`和`your_hdfs_port`需要替换为实际的HDFS主机和端口,`/path/on/hdfs`是HDFS上的目录路径,`/path/on/local`是本地目录路径。`makedirs`方法用于创建目录,`upload`方法用于上传文件,`download`方法用于下载文件,`delete`方法用于删除文件。
使用Python hadoop api操作MapReduce的示例代码如下:
```python
from hadoop.mapred import JobConf, StreamingJob
conf = JobConf()
conf.set('mapreduce.job.inputformat.class', 'org.apache.hadoop.mapreduce.lib.input.TextInputFormat')
conf.set('mapreduce.job.outputformat.class', 'org.apache.hadoop.mapreduce.lib.output.TextOutputFormat')
conf.set('mapreduce.job.name', 'word_count')
conf.set_mapper('python mapper.py')
conf.set_reducer('python reducer.py')
job = StreamingJob(args=['/path/on/hdfs/input', '/path/on/hdfs/output'], conf=conf)
job.run()
```
其中,`/path/on/hdfs/input`是输入路径,`/path/on/hdfs/output`是输出路径,`mapper.py`和`reducer.py`是Map和Reduce函数的实现。`JobConf`用于配置MapReduce作业,`StreamingJob`用于运行MapReduce作业。
需要注意的是,使用Python hadoop api操作HDFS和MapReduce需要先安装`hadoop`包和相关的依赖库。
阅读全文