图像超分辨率技术 opencv python
时间: 2023-07-08 10:05:59 浏览: 258
图像超分辨率是一种将低分辨率图像转换为高分辨率图像的技术。OpenCV是一个广泛使用的计算机视觉库,它提供了许多超分辨率算法的实现。以下是使用OpenCV在Python中实现图像超分辨率的步骤:
1. 导入必要的库:
```python
import cv2
import numpy as np
```
2. 读取低分辨率图像:
```python
img_lr = cv2.imread('low_res_image.jpg')
```
3. 定义超分辨率算法:
OpenCV提供了两种超分辨率算法:基于插值的算法和基于重建的算法。在这里,我们使用基于重建的算法:
```python
sr = cv2.dnn_superres.DnnSuperResImpl_create()
sr.readModel('EDSR_x3.pb')
sr.setModel('edsr', 3)
```
4. 对低分辨率图像进行超分辨率处理:
```python
img_hr = sr.upsample(img_lr)
```
5. 显示原始和超分辨率图像:
```python
cv2.imshow('Low Resolution Image', img_lr)
cv2.imshow('Super Resolution Image', img_hr)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
完整的代码如下:
```python
import cv2
import numpy as np
# Load the low resolution image
img_lr = cv2.imread('low_res_image.jpg')
# Define the super resolution algorithm
sr = cv2.dnn_superres.DnnSuperResImpl_create()
sr.readModel('EDSR_x3.pb')
sr.setModel('edsr', 3)
# Upscale the low resolution image
img_hr = sr.upsample(img_lr)
# Show the images
cv2.imshow('Low Resolution Image', img_lr)
cv2.imshow('Super Resolution Image', img_hr)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
其中,'EDSR_x3.pb'是一个预先训练好的模型,用于图像超分辨率处理。您可以在OpenCV的GitHub页面上找到更多的超分辨率模型和示例代码。
阅读全文