如何在YOLO的detect中添加代码,实现对视频添加框
时间: 2024-02-22 20:59:50 浏览: 215
Yolo v4 的 TensorFlow 实现.zip
要在YOLO的detect中添加代码,实现对视频添加框,可以按照以下步骤进行:
1. 导入所需的库,如cv2和Numpy等。
2. 加载YOLO模型并对视频进行处理,可以使用cv2.VideoCapture()函数读取视频。
3. 对每一帧图像进行目标检测,可以使用YOLO的detect函数,根据检测到的目标的位置信息,在图像上绘制框。
4. 将处理后的每一帧图像写入一个新的视频文件中,可以使用cv2.VideoWriter()函数将图像写入视频。
下面是一些示例代码,可以帮助你完成上述步骤:
```
import cv2
import numpy as np
# 加载YOLO模型
net = cv2.dnn.readNetFromDarknet('yolov3.cfg', 'yolov3.weights')
classes = []
with open('coco.names', 'r') as f:
classes = [line.strip() for line in f.readlines()]
# 打开视频
cap = cv2.VideoCapture('video.mp4')
# 获取视频信息
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(cap.get(cv2.CAP_PROP_FPS))
# 新建视频文件
out = cv2.VideoWriter('output.mp4', cv2.VideoWriter_fourcc(*'mp4v'), fps, (width, height))
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# 目标检测
blob = cv2.dnn.blobFromImage(frame, 1/255.0, (416, 416), swapRB=True, crop=False)
net.setInput(blob)
outs = net.forward(net.getUnconnectedOutLayersNames())
class_ids = []
confidences = []
boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.5:
center_x = int(detection[0] * width)
center_y = int(detection[1] * height)
w = int(detection[2] * width)
h = int(detection[3] * height)
x = int(center_x - w/2)
y = int(center_y - h/2)
class_ids.append(class_id)
confidences.append(float(confidence))
boxes.append([x, y, w, h])
# 绘制框
indices = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
for i in indices:
i = i[0]
box = boxes[i]
x, y, w, h = box
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
cv2.putText(frame, classes[class_ids[i]], (x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
# 将处理后的图像写入视频文件
out.write(frame)
# 释放资源
cap.release()
out.release()
cv2.destroyAllWindows()
```
注意,上述代码仅供参考,具体实现可能需要根据实际情况进行调整。
阅读全文