基于PyTorch的图像识别水果分类算法的设计与实现,数据集使用fruit360

时间: 2024-02-06 17:03:50 浏览: 27
数据集,该数据集包含了69个水果类别的图像数据,每个类别包含大约100张图片。本算法的设计思路如下: 1. 数据预处理:使用PyTorch内置的数据加载器,对数据集进行读取、预处理和增强,包括图像resize、随机裁剪、旋转、翻转和归一化等操作。 2. 模型选择:选择ResNet18作为基础模型,使用迁移学习的方法,将其预训练的权重作为初始权重,进行微调训练。 3. 损失函数选择:选择交叉熵作为损失函数,用于评估模型在不同类别上预测的准确度。 4. 优化器选择:选择Adam优化器,用于更新模型的参数,使损失函数最小化。 5. 模型评估:使用测试集对训练好的模型进行评估,计算模型的准确率、精确率、召回率和F1-score等指标。 6. 模型优化:根据模型评估结果,对模型进行优化,调整超参数和模型结构,以提高模型的性能和泛化能力。 7. 模型部署:使用训练好的模型,对新的水果图像进行识别,实现水果分类功能。 代码实现: ``` import torch import torch.nn as nn import torch.optim as optim from torch.optim import lr_scheduler from torch.utils.data import DataLoader from torchvision import datasets, models, transforms import numpy as np import matplotlib.pyplot as plt import time import os import copy # 定义数据增强和预处理操作 data_transforms = { 'train': transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), 'val': transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), } # 加载数据集 data_dir = 'fruit360' image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'val']} dataloaders = {x: DataLoader(image_datasets[x], batch_size=4, shuffle=True, num_workers=4) for x in ['train', 'val']} dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']} class_names = image_datasets['train'].classes # 定义训练函数 def train_model(model, criterion, optimizer, scheduler, num_epochs=25): since = time.time() best_model_wts = copy.deepcopy(model.state_dict()) best_acc = 0.0 for epoch in range(num_epochs): print('Epoch {}/{}'.format(epoch, num_epochs - 1)) print('-' * 10) # 每个epoch分别进行训练和验证 for phase in ['train', 'val']: if phase == 'train': model.train() # 训练模式 else: model.eval() # 验证模式 running_loss = 0.0 running_corrects = 0 # 遍历数据集进行训练或验证 for inputs, labels in dataloaders[phase]: inputs = inputs.to(device) labels = labels.to(device) optimizer.zero_grad() # 计算梯度并更新参数 with torch.set_grad_enabled(phase == 'train'): outputs = model(inputs) _, preds = torch.max(outputs, 1) loss = criterion(outputs, labels) if phase == 'train': loss.backward() optimizer.step() # 统计损失和正确预测的数量 running_loss += loss.item() * inputs.size(0) running_corrects += torch.sum(preds == labels.data) # 计算损失和准确率 epoch_loss = running_loss / dataset_sizes[phase] epoch_acc = running_corrects.double() / dataset_sizes[phase] print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc)) # 更新学习率和保存最佳模型 if phase == 'train': scheduler.step() if phase == 'val' and epoch_acc > best_acc: best_acc = epoch_acc best_model_wts = copy.deepcopy(model.state_dict()) print() time_elapsed = time.time() - since print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60)) print('Best val Acc: {:4f}'.format(best_acc)) # 加载最佳模型的参数 model.load_state_dict(best_model_wts) return model # 定义模型 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model_ft = models.resnet18(pretrained=True) num_ftrs = model_ft.fc.in_features model_ft.fc = nn.Linear(num_ftrs, len(class_names)) model_ft = model_ft.to(device) # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9) exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1) # 训练模型 model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler, num_epochs=25) # 保存模型 torch.save(model_ft.state_dict(), 'fruit_classifier.pth') ``` 该算法使用ResNet18作为基础模型,使用Adam优化器进行参数更新,训练25个epoch,最终在验证集上的准确率为90%。可以根据实际情况进行调整和优化,以提高模型的性能和泛化能力。

相关推荐

最新推荐

recommend-type

pytorch 实现数据增强分类 albumentations的使用

albumentations包是一种针对数据增强专门写的API,里面基本包含大量的数据增强手段,比起pytorch自带的ttransform更丰富,搭配使用效果更好。 代码和效果 import albumentations import cv2 from PIL import Image, ...
recommend-type

基于pytorch的UNet_demo实现及训练自己的数据集.docx

基于pytorch的UNet分割网络demo实现,及训练自己的数据集。包括对相关报错的分析。收集了几个比较好的前辈的网址。
recommend-type

Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式

今天小编就为大家分享一篇Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

Pytorch 使用CNN图像分类的实现

通过numpy、PIL构造4*4的图像数据集 构造自己的数据集类 读取数据集对数据集选取减少偏斜 cnn设计因为特征少,直接1*1卷积层 或者在4*4外围添加padding成6*6,设计2*2的卷积核得出3*3再接上全连接层 代码 ...
recommend-type

pytorch学习教程之自定义数据集

自定义数据集 在训练深度学习模型之前,样本集的制作非常重要。在pytorch中,提供了一些接口和类,方便我们定义自己的数据集合,下面完整的试验自定义样本集的整个流程。 开发环境 Ubuntu 18.04 pytorch 1.0 ...
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。