移动机器人的路径规划根据侧重点的不同可分为两类[9]:全局路径规划和局部路径规划。全局路径规划指每个移动机器人在进行路径规划前均可获得全局环境作为先验信息,通过定义环境中元素相对于参考轴的位置,规划出到达确定目标点的合理路径。局部路径规划为每个移动机器人仅可获得环境部分信息,无法在路径规划前获得障碍物位置等其他先验信息,需要移动机器人具备实时导航避障的能力,通过识别环境的动态条件和建立各种要素之间的位置关系进行处理。常见的全局路径规划算法有A-star(A*)算法、Dijkstra算法、遗传算法、蚁群算法等;常见的机器人局部路径规划算法有人工势场法、模糊逻辑、强化学习、动态窗口法等。降重,但是要通顺,有逻辑
时间: 2024-04-22 19:25:03 浏览: 134
基于ARM的移动机器人全局路径规划策略.pdf
根据侧重点的不同,移动机器人的路径规划可以分为两类:全局路径规划和局部路径规划。
全局路径规划是指在进行路径规划之前,每个移动机器人可以获取到全局环境的先验信息。通过定义环境中各元素相对于参考轴的位置,可以规划出一条合理的路径,使机器人能够到达目标点。常见的全局路径规划算法包括A-star(A*)算法、Dijkstra算法、遗传算法、蚁群算法等。
局部路径规划则是指每个移动机器人仅能获取到环境的部分信息,无法在路径规划之前获得障碍物位置等其他先验信息。因此,机器人需要具备实时导航和避障的能力。在局部路径规划中,机器人通过识别环境的动态条件和建立各要素之间的位置关系来进行路径规划。常见的机器人局部路径规划算法包括人工势场法、模糊逻辑、强化学习、动态窗口法等。
这两类路径规划算法各有特点和适用场景。全局路径规划适用于静态环境下,机器人可以提前获取到完整的环境信息的情况。而局部路径规划适用于动态环境下,机器人需要根据实时获取的部分信息来进行决策和避障。
希望这个回答对你有帮助!如果还有其他问题,请随时提问。
阅读全文