TP,TN,FN,FP
时间: 2023-10-18 21:06:28 浏览: 282
这四个缩写代表了二元分类模型中的四种情况,分别是真正例(True Positive)、真负例(True Negative)、假负例(False Negative)和假正例(False Positive)。
其中,真正例指的是模型将正例预测为正例的情况;真负例指的是模型将负例预测为负例的情况;假负例指的是模型将正例预测为负例的情况;假正例指的是模型将负例预测为正例的情况。
这四个指标可以用来评估分类模型的性能,常见的评价指标包括准确率、召回率、精确率和 F1 值等。
相关问题
ACC里面TP TN FP FN是什么
TP是True Positive,表示实际为正例且被判定为正例的样本数;
TN是True Negative,表示实际为负例且被判定为负例的样本数;
FP是False Positive,表示实际为负例但被判定为正例的样本数;
FN是False Negative,表示实际为正例但被判定为负例的样本数。
解释代码的意思pro_zong=np.hstack(pro_zong) y_test_zong=np.hstack(y_test_zong) tp= tp2014+tp2015+tp2016+tp2017+tp2018+tp2019+tp2020 fp= fp2014+fp2015+fp2016+fp2017+fp2018+fp2019+fp2020 tn= tn2014+tn2015+tn2016+tn2017+tn2018+tn2019+tn2020 fn= fn2014+fn2015+fn2016+fn2017+fn2018+fn2019+fn2020 TNrate = tn/(tn+fp) TPrate = tp/(tp+fn) auc=roc_auc_score(y_test_zong,pro_zong) accuracy = (tp+tn)/(tp+fp+tn+fn) precision=tp/(tp+fp) recall=tp/(tp+fn) f=2*precision*recall/(precision+recall) g=math.sqrt((tp/(tp+fn))*(tn/(tn+fp))) tprate_zong.append(TPrate) tnrate_zong.append(TNrate) acc_zong.append(accuracy) pre_zong.append(precision) f_zong.append(f) g_zong.append(g)
这段代码的主要作用是计算模型的性能指标,其中:
- `pro_zong` 是模型对测试数据集的预测概率值;
- `y_test_zong` 是测试数据集的真实标签;
- `tp`、`fp`、`tn`、`fn` 是模型预测结果与真实标签之间的四个统计量,分别表示真正例数、假正例数、真反例数、假反例数;
- `TNrate`、`TPrate` 分别是真反例率和真正例率;
- `auc` 是模型的 AUC 值;
- `accuracy` 是模型的准确率;
- `precision`、`recall`、`f` 分别是模型的精确率、召回率和 F1 值;
- `g` 是模型的 G-mean 值。
最后,这段代码将计算出的各项指标分别添加到对应的列表中,以便后续分析和展示。
阅读全文