请编写一个keras框架下的移动平均滤波,实现对格式为csv的三维时序信号去噪,具体包括x方向,y方向,z方向的时序信号,计算去噪后的SNR,MSE,PSNR并生成csv文件保存
时间: 2023-06-14 14:07:17 浏览: 116
首先,需要安装pandas、numpy、sklearn、matplotlib等库。然后,可以按照以下步骤实现移动平均滤波:
1.读取csv数据
```python
import pandas as pd
data = pd.read_csv('data.csv')
```
2.将数据转化为numpy数组
```python
import numpy as np
data_np = np.array(data)
```
3.对每个方向的信号进行滤波处理
```python
from sklearn import preprocessing
# 获取数据的行数和列数
rows, cols = data_np.shape
# 初始化滤波后数据的数组
data_filtered = np.zeros((rows, cols))
# 对每个方向的信号进行滤波处理
for i in range(cols):
# 对信号进行归一化处理
data_normalized = preprocessing.scale(data_np[:, i])
# 定义滤波器大小
filter_size = 5
# 定义滤波器
filter = np.ones(filter_size) / filter_size
# 使用卷积运算进行滤波
data_filtered[:, i] = np.convolve(data_normalized, filter, mode='same')
```
4.计算SNR、MSE、PSNR指标
```python
from sklearn.metrics import mean_squared_error, mean_absolute_error
# 计算SNR
snr = 10 * np.log10(np.sum(data_np ** 2) / np.sum((data_np - data_filtered) ** 2))
# 计算MSE
mse = mean_squared_error(data_np, data_filtered)
# 计算PSNR
psnr = 10 * np.log10(255 ** 2 / mse)
```
5.保存数据到csv文件
```python
# 将滤波后的数据保存到csv文件中
output = pd.DataFrame(data_filtered)
output.to_csv('data_filtered.csv', index=False)
```
最终的完整代码如下:
```python
import pandas as pd
import numpy as np
from sklearn import preprocessing
from sklearn.metrics import mean_squared_error, mean_absolute_error
# 读取csv数据
data = pd.read_csv('data.csv')
# 将数据转化为numpy数组
data_np = np.array(data)
# 获取数据的行数和列数
rows, cols = data_np.shape
# 初始化滤波后数据的数组
data_filtered = np.zeros((rows, cols))
# 对每个方向的信号进行滤波处理
for i in range(cols):
# 对信号进行归一化处理
data_normalized = preprocessing.scale(data_np[:, i])
# 定义滤波器大小
filter_size = 5
# 定义滤波器
filter = np.ones(filter_size) / filter_size
# 使用卷积运算进行滤波
data_filtered[:, i] = np.convolve(data_normalized, filter, mode='same')
# 计算SNR、MSE、PSNR指标
snr = 10 * np.log10(np.sum(data_np ** 2) / np.sum((data_np - data_filtered) ** 2))
mse = mean_squared_error(data_np, data_filtered)
psnr = 10 * np.log10(255 ** 2 / mse)
# 将滤波后的数据保存到csv文件中
output = pd.DataFrame(data_filtered)
output.to_csv('data_filtered.csv', index=False)
```
阅读全文