请编写一个keras框架下的中值滤波,实现对格式为csv的三个一维时序信号去噪,具体包括x方向,y方向,z方向的时序信号,计算去噪后的SNR,MSE,PSNR并生成csv文件保存
时间: 2023-06-15 22:05:02 浏览: 143
gandlf:凯拉斯(Keras)的生成对抗网络
首先,我们需要导入所需的库:numpy、pandas、keras和sklearn。
```python
import numpy as np
import pandas as pd
from keras.layers import Input, Conv1D
from keras.models import Model
from sklearn.metrics import mean_squared_error, mean_absolute_error, peak_signal_noise_ratio
```
然后,我们定义一个函数来进行中值滤波。
```python
def median_filter(signal, kernel_size):
filtered_signal = []
for i in range(len(signal)):
if i < kernel_size // 2:
filtered_signal.append(signal[i])
elif i >= len(signal) - kernel_size // 2:
filtered_signal.append(signal[i])
else:
median = np.median(signal[i - kernel_size // 2:i + kernel_size // 2 + 1])
filtered_signal.append(median)
return np.array(filtered_signal)
```
接下来,我们定义一个函数来加载数据和处理数据。
```python
def load_data(file_path):
data = pd.read_csv(file_path, header=None)
x = data.iloc[:, 0].values
y = data.iloc[:, 1].values
z = data.iloc[:, 2].values
return x, y, z
```
然后,我们定义一个函数来构建模型。
```python
def build_model(kernel_size):
input_layer = Input(shape=(None, 1))
conv_layer = Conv1D(filters=1, kernel_size=kernel_size, padding='same')(input_layer)
model = Model(inputs=input_layer, outputs=conv_layer)
model.compile(optimizer='adam', loss='mse')
return model
```
接下来,我们定义一个函数来对信号进行去噪,并计算SNR、MSE和PSNR。
```python
def denoise_signal(signal, kernel_size):
filtered_signal = median_filter(signal, kernel_size)
filtered_signal = filtered_signal.reshape((1, filtered_signal.shape[0], 1))
model = build_model(kernel_size)
model.fit(filtered_signal, filtered_signal, epochs=100, verbose=0)
denoised_signal = model.predict(filtered_signal).reshape((filtered_signal.shape[1],))
snr = 10 * np.log10(np.sum(signal ** 2) / np.sum((signal - denoised_signal) ** 2))
mse = mean_squared_error(signal, denoised_signal)
psnr = peak_signal_noise_ratio(signal, denoised_signal)
return denoised_signal, snr, mse, psnr
```
最后,我们定义一个函数来加载数据、进行去噪和保存结果。
```python
def main(file_path, kernel_size):
x, y, z = load_data(file_path)
denoised_x, snr_x, mse_x, psnr_x = denoise_signal(x, kernel_size)
denoised_y, snr_y, mse_y, psnr_y = denoise_signal(y, kernel_size)
denoised_z, snr_z, mse_z, psnr_z = denoise_signal(z, kernel_size)
data = {'X': [snr_x, mse_x, psnr_x], 'Y': [snr_y, mse_y, psnr_y], 'Z': [snr_z, mse_z, psnr_z]}
result = pd.DataFrame(data=data, index=['SNR', 'MSE', 'PSNR'])
result.to_csv('result.csv')
```
现在,我们可以调用`main`函数来进行处理。
```python
main('data.csv', 5)
```
在上面的代码中,我们假设数据文件为`data.csv`,中值滤波的大小为5。处理完毕后,结果将被保存在`result.csv`文件中。
阅读全文