写一个基于opencv c++的聚类算法
时间: 2024-05-13 17:19:55 浏览: 92
C++基于OpenCV的模糊C均值聚类算法实现与应用
以下是一个基于OpenCV C++的聚类算法示例,使用K-means算法实现:
```
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <iostream>
#include <vector>
using namespace cv;
using namespace std;
int main()
{
Mat image = imread("example.jpg", IMREAD_COLOR);
if (image.empty())
{
cout << "Could not open or find the image" << endl;
return -1;
}
Mat reshaped_image = image.reshape(1, image.rows * image.cols);
reshaped_image.convertTo(reshaped_image, CV_32F);
int K = 6; // number of clusters
TermCriteria criteria(TermCriteria::EPS + TermCriteria::COUNT, 10, 1.0);
int attempts = 5;
Mat labels, centers;
kmeans(reshaped_image, K, labels, criteria, attempts, KMEANS_RANDOM_CENTERS, centers);
vector<Mat> clusters(K);
for (int i = 0; i < K; i++)
{
clusters[i] = Mat::zeros(image.rows, image.cols, CV_8UC3);
}
MatIterator_<Vec3b> it, end;
int i = 0;
for (it = image.begin<Vec3b>(), end = image.end<Vec3b>(); it != end; ++it, ++i)
{
int cluster_idx = labels.at<int>(i);
clusters[cluster_idx].at<Vec3b>(i) = *it;
}
for (int i = 0; i < K; i++)
{
imshow("Cluster " + to_string(i), clusters[i]);
}
waitKey(0);
return 0;
}
```
该示例读取一张图像,将其重塑为行向量,然后使用K-means算法将其聚类为给定数量的簇。最终,每个簇都被分配到一个颜色,并显示在单独的窗口中。
阅读全文