生成一个测试图像并应用yolo v4进入目标测试的python代码

时间: 2024-05-12 08:20:32 浏览: 142
抱歉,作为AI语言模型,我无法生成图像并应用yolo v4进入目标测试的Python代码。但是,我可以为您提供Python代码来使用yolo v4进行目标检测。 首先,您需要安装yolo v4库和相关依赖项。然后,您可以使用以下代码进行目标检测: ```python import cv2 import numpy as np import time # Load Yolo net = cv2.dnn.readNet("yolov4.weights", "yolov4.cfg") classes = [] with open("coco.names", "r") as f: classes = [line.strip() for line in f.readlines()] # Load image img = cv2.imread("test.jpg") # Get image dimensions height, width, _ = img.shape # Create blob from image blob = cv2.dnn.blobFromImage(img, 1/255.0, (416, 416), swapRB=True, crop=False) # Set input for network net.setInput(blob) # Get output layer names layer_names = net.getLayerNames() output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()] # Forward pass start = time.time() outs = net.forward(output_layers) end = time.time() print("Inference time: ", end - start) # Extract bounding boxes, confidences, and class IDs boxes = [] confidences = [] class_ids = [] for out in outs: for detection in out: scores = detection[5:] class_id = np.argmax(scores) confidence = scores[class_id] if confidence > 0.5: center_x = int(detection[0] * width) center_y = int(detection[1] * height) w = int(detection[2] * width) h = int(detection[3] * height) x = center_x - w // 2 y = center_y - h // 2 boxes.append([x, y, w, h]) confidences.append(float(confidence)) class_ids.append(class_id) # Apply non-max suppression indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4) # Draw bounding boxes and labels on image font = cv2.FONT_HERSHEY_PLAIN colors = np.random.uniform(0, 255, size=(len(classes), 3)) for i in indexes.flatten(): x, y, w, h = boxes[i] label = str(classes[class_ids[i]]) confidence = str(round(confidences[i], 2)) color = colors[class_ids[i]] cv2.rectangle(img, (x, y), (x + w, y + h), color, 2) cv2.putText(img, label + " " + confidence, (x, y - 5), font, 1, color, 2) # Display image cv2.imshow("Image", img) cv2.waitKey(0) cv2.destroyAllWindows() ``` 在上面的代码中,我们首先加载了yolo v4的权重和配置文件,然后使用cv2.dnn.blobFromImage()方法创建了一个blob,它会将图像缩放到416x416,同时进行正则化和交换RGB通道。接着,我们对blob进行了前向传递,并提取了每个检测到的物体的边界框、置信度和类别ID。最后,我们应用了非最大抑制来去除重叠的边界框,并在图像上绘制了每个物体的边界框和标签。 您需要将代码中的文件路径替换为您自己的文件路径,并根据需要进行其他修改。
阅读全文

相关推荐

最新推荐

recommend-type

pycharm下python使用yolov3/yolov3-tiny训练好的权重文件.weights进行行人检测,批量测试自定义文件夹下的图片并输出至指定文件夹

2. OpenCV 3.4 - 一个强大的计算机视觉库,用于图像处理和分析。 3. YOLOv3训练好的权重文件 - 这是你根据需求训练的模型,例如`yolov3-tiny_person800.weights`,它可以识别行人。 文件目录结构通常如下所示: ``...
recommend-type

使用Python和OpenCV检测图像中的物体并将物体裁剪下来

在本文中,我们将深入探讨如何使用Python和OpenCV库来检测图像中的物体并进行精确的裁剪。这个过程对于图像处理和计算机视觉任务至关重要,尤其是当你需要从复杂背景中提取特定目标时。以下是一个详细步骤的说明: ...
recommend-type

Python 使用Opencv实现目标检测与识别的示例代码

OpenCV(Open Source Computer Vision Library)是一个跨平台的计算机视觉库,提供了丰富的图像处理和计算机视觉功能,包括图像读取、处理、特征提取以及目标检测等。 在目标检测中,HOG(Histogram of Oriented ...
recommend-type

Python+树莓派+YOLO打造一款人工智能照相机

在这个项目中,我们将利用Python、树莓派和YOLO(You Only Look Once)技术构建一个智能化的人工相机,专门用于检测并拍照记录小鸟的出现。YOLO是一种高效的实时目标检测系统,尤其适合在资源有限的设备如树莓派上...
recommend-type

一文读懂目标检测:R-CNN、Fast R-CNN、Faster R-CNN、YOLO、SSD.doc

目标检测是图像处理中的一个基本问题,即在给定的图片中精确找到物体所在位置,并标注出物体的类别。目标检测要解决的问题就是物体在哪里以及是什么的整个流程问题。 二、传统的目标检测算法 传统的目标检测算法...
recommend-type

Angular实现MarcHayek简历展示应用教程

资源摘要信息:"MarcHayek-CV:我的简历的Angular应用" Angular 应用是一个基于Angular框架开发的前端应用程序。Angular是一个由谷歌(Google)维护和开发的开源前端框架,它使用TypeScript作为主要编程语言,并且是单页面应用程序(SPA)的优秀解决方案。该应用不仅展示了Marc Hayek的个人简历,而且还介绍了如何在本地环境中设置和配置该Angular项目。 知识点详细说明: 1. Angular 应用程序设置: - Angular 应用程序通常依赖于Node.js运行环境,因此首先需要全局安装Node.js包管理器npm。 - 在本案例中,通过npm安装了两个开发工具:bower和gulp。bower是一个前端包管理器,用于管理项目依赖,而gulp则是一个自动化构建工具,用于处理如压缩、编译、单元测试等任务。 2. 本地环境安装步骤: - 安装命令`npm install -g bower`和`npm install --global gulp`用来全局安装这两个工具。 - 使用git命令克隆远程仓库到本地服务器。支持使用SSH方式(`***:marc-hayek/MarcHayek-CV.git`)和HTTPS方式(需要替换为具体用户名,如`git clone ***`)。 3. 配置流程: - 在server文件夹中的config.json文件里,需要添加用户的电子邮件和密码,以便该应用能够通过内置的联系功能发送信息给Marc Hayek。 - 如果想要在本地服务器上运行该应用程序,则需要根据不同的环境配置(开发环境或生产环境)修改config.json文件中的“baseURL”选项。具体而言,开发环境下通常设置为“../build”,生产环境下设置为“../bin”。 4. 使用的技术栈: - JavaScript:虽然没有直接提到,但是由于Angular框架主要是用JavaScript来编写的,因此这是必须理解的核心技术之一。 - TypeScript:Angular使用TypeScript作为开发语言,它是JavaScript的一个超集,添加了静态类型检查等功能。 - Node.js和npm:用于运行JavaScript代码以及管理JavaScript项目的依赖。 - Git:版本控制系统,用于代码的版本管理及协作开发。 5. 关于项目结构: - 该应用的项目文件夹结构可能遵循Angular CLI的典型结构,包含了如下目录:app(存放应用组件)、assets(存放静态资源如图片、样式表等)、environments(存放环境配置文件)、server(存放服务器配置文件如上文的config.json)等。 6. 开发和构建流程: - 开发时,可能会使用Angular CLI来快速生成组件、服务等,并利用热重载等特性进行实时开发。 - 构建应用时,通过gulp等构建工具可以进行代码压缩、ES6转译、单元测试等自动化任务,以确保代码的质量和性能优化。 7. 部署: - 项目最终需要部署到服务器上,配置文件中的“baseURL”选项指明了服务器上的资源基础路径。 8. 关于Git仓库: - 压缩包子文件的名称为MarcHayek-CV-master,表明这是一个使用Git版本控制的仓库,且存在一个名为master的分支,这通常是项目的主分支。 以上知识点围绕Angular应用“MarcHayek-CV:我的简历”的创建、配置、开发、构建及部署流程进行了详细说明,涉及了前端开发中常见的工具、技术及工作流。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

深入剖析:内存溢出背后的原因、预防及应急策略(专家版)

![深入剖析:内存溢出背后的原因、预防及应急策略(专家版)](https://d8it4huxumps7.cloudfront.net/uploads/images/65e82a01a4196_dangling_pointer_in_c_2.jpg?d=2000x2000) 参考资源链接:[Net 内存溢出(System.OutOfMemoryException)的常见情况和处理方式总结](https://wenku.csdn.net/doc/6412b784be7fbd1778d4a95f?spm=1055.2635.3001.10343) # 1. 内存溢出的概念及影响 内存溢出,又称
recommend-type

Java中如何对年月日时分秒的日期字符串作如下处理:如何日期分钟介于两个相连的半点之间,就将分钟数调整为前半点

在Java中,你可以使用`java.time`包中的类来处理日期和时间,包括格式化和调整。下面是一个示例,展示了如何根据给定的日期字符串(假设格式为"yyyy-MM-dd HH:mm:ss")进行这样的处理: ```java import java.text.SimpleDateFormat; import java.time.LocalDateTime; import java.time.ZoneId; import java.time.ZonedDateTime; public class Main { public static void main(String[] args
recommend-type

Crossbow Spot最新更新 - 获取Chrome扩展新闻

资源摘要信息:"Crossbow Spot - Latest News Update-crx插件" 该信息是关于一款特定的Google Chrome浏览器扩展程序,名为"Crossbow Spot - Latest News Update"。此插件的目的是帮助用户第一时间获取最新的Crossbow Spot相关信息,它作为一个RSS阅读器,自动聚合并展示Crossbow Spot的最新新闻内容。 从描述中可以提取以下关键知识点: 1. 功能概述: - 扩展程序能让用户领先一步了解Crossbow Spot的最新消息,提供实时更新。 - 它支持自动更新功能,用户不必手动点击即可刷新获取最新资讯。 - 用户界面设计灵活,具有美观的新闻小部件,使得信息的展现既实用又吸引人。 2. 用户体验: - 桌面通知功能,通过Chrome的新通知中心托盘进行实时推送,确保用户不会错过任何重要新闻。 - 提供一个便捷的方式来保持与Crossbow Spot最新动态的同步。 3. 语言支持: - 该插件目前仅支持英语,但开发者已经计划在未来的版本中添加对其他语言的支持。 4. 技术实现: - 此扩展程序是基于RSS Feed实现的,即从Crossbow Spot的RSS源中提取最新新闻。 - 扩展程序利用了Chrome的通知API,以及RSS Feed处理机制来实现新闻的即时推送和展示。 5. 版权与免责声明: - 所有的新闻内容都是通过RSS Feed聚合而来,扩展程序本身不提供原创内容。 - 用户在使用插件时应遵守相关的版权和隐私政策。 6. 安装与使用: - 用户需要从Chrome网上应用店下载.crx格式的插件文件,即Crossbow_Spot_-_Latest_News_Update.crx。 - 安装后,插件会自动运行,并且用户可以对其进行配置以满足个人偏好。 从以上信息可以看出,该扩展程序为那些对Crossbow Spot感兴趣或需要密切跟进其更新的用户提供了一个便捷的解决方案,通过集成RSS源和Chrome通知机制,使得信息获取变得更加高效和及时。这对于需要实时更新信息的用户而言,具有一定的实用价值。同时,插件的未来发展计划中包括了多语言支持,这将使得更多的用户能够使用并从中受益。