class FTPProcess(Process): def __init__(self): super(FTPProcess, self).__init__() def run(self): ftp_connect_download() 什么意思
时间: 2024-04-23 19:24:21 浏览: 35
这段代码定义了一个名为FTPProcess的类,该类继承了Process类。在该类中,定义了一个构造函数__init__(),通过调用父类Process的构造函数来初始化该类。同时,该类还定义了一个run()方法,用于执行FTP下载操作,具体实现是调用了一个名为ftp_connect_download()的函数。
这个类的作用是为了创建一个新的进程,并在该进程中执行FTP下载操作。如果想要使用该类,需要在类的实例化过程中调用start()方法,该方法会自动调用run()方法开始执行FTP下载操作。
相关问题
改错import time from multiprocessing import process class Myprocess(process): def __init__(self,name): super().__init__() # 调用父类的构造方法? self.name=name def run(self) ->None: print(f"a进程ID:{self.pid}") time.sleep(5) if __name__=="__main__": pi = Myprocess("进程1") p2 = Myprocess("进程2") pi.start() p2.start()
这段代码本身没有明显的错误,但是如果要运行,需要在最后加上`pi.join()`和`p2.join()`,等待进程结束。修改后代码如下:
```
import time
from multiprocessing import Process
class MyProcess(Process):
def __init__(self, name):
super().__init__()
self.name = name
def run(self) -> None:
print(f"{self.name}进程ID:{self.pid}")
time.sleep(5)
if __name__ == "__main__":
p1 = MyProcess("进程1")
p2 = MyProcess("进程2")
p1.start()
p2.start()
p1.join()
p2.join()
```
修改的内容包括:
1. 将`process`改为`Process`,因为类名应该首字母大写。
2. 修改了类名`Myprocess`为`MyProcess`,同样是因为类名应该首字母大写。
3. 在最后加上`p1.join()`和`p2.join()`,等待进程结束。
class DownConv(nn.Module): def __init__(self, seq_len=200, hidden_size=64, m_segments=4,k1=10,channel_reduction=16): super().__init__() """ DownConv is implemented by stacked strided convolution layers and more details can be found below. When the parameters k_1 and k_2 are determined, we can soon get m in Eq.2 of the paper. However, we are more concerned with the size of the parameter m, so we searched for a combination of parameter m and parameter k_1 (parameter k_2 can be easily calculated in this process) to find the optimal segment numbers. Args: input_tensor (torch.Tensor): the input of the attention layer Returns: output_conv (torch.Tensor): the convolutional outputs in Eq.2 of the paper """ self.m =m_segments self.k1 = k1 self.channel_reduction = channel_reduction # avoid over-parameterization middle_segment_length = seq_len/k1 k2=math.ceil(middle_segment_length/m_segments) padding = math.ceil((k2*self.m-middle_segment_length)/2.0) # pad the second convolutional layer appropriately self.conv1a = nn.Conv1d(in_channels=hidden_size, out_channels=hidden_size // self.channel_reduction, kernel_size=self.k1, stride=self.k1) self.relu1a = nn.ReLU(inplace=True) self.conv2a = nn.Conv1d(in_channels=hidden_size // self.channel_reduction, out_channels=hidden_size, kernel_size=k2, stride=k2, padding = padding) def forward(self, input_tensor): input_tensor = input_tensor.permute(0, 2, 1) x1a = self.relu1a(self.conv1a(input_tensor)) x2a = self.conv2a(x1a) if x2a.size(2) != self.m: print('size_erroe, x2a.size_{} do not equals to m_segments_{}'.format(x2a.size(2),self.m)) output_conv = x2a.permute(0, 2, 1) return output_conv
这是一个用于实现降采样卷积(DownConv)的PyTorch模型类。在构造函数中,需要指定一些参数,包括序列长度seq_len,隐藏层大小hidden_size,中间段数m_segments,卷积核大小k1和通道缩减channel_reduction。其中,降采样卷积层的实现使用了两个卷积层,第一个卷积层的卷积核大小为k1,步长为k1,将输入张量进行降采样;第二个卷积层的卷积核大小为k2,步长为k2,将第一个卷积层的输出进行进一步的降采样,并按照论文中的公式计算得到输出张量。为了使得第二个卷积层的输出张量大小与中间段数m_segments相等,需要在卷积层中进行适当的padding。在前向传播时,需要将输入张量进行维度变换,使得其可以被卷积层处理,然后将卷积层的输出张量再次进行维度变换,使得其可以作为下一层的输入。如果第二个卷积层的输出张量大小不等于中间段数m_segments,则会输出一条错误信息。
阅读全文