解释代码:y_multiclass = torch.from_numpy(y_multiclass_np).view(-1,1) if not torch.is_tensor(y_multiclass_np) else y_multiclass_np y_multiclass=y_multiclass.view(-1) self.y_matrix = torch.stack([self.cast(y_multiclass, k) for k in range(self.n_svm)],0).to(self.device) self.kernel = kernel a = self.a b = self.b

时间: 2023-06-03 19:03:38 浏览: 69
这段代码是将多分类问题转换为多个二分类问题,用于支持向量机的分类器训练。首先将标签y_multiclass_np转换为Tensor类型的y_multiclass,并且将它转为一维的数组。然后根据分类器的数目self.n_svm,将每个类别k的标签y_multiclass转化为一个向量,即将除了类别k外的标签设置为-1,将类别k的标签设置为+1,并且将这些向量按行合并起来,即构成了一个矩阵self.y_matrix。其中,self.cast函数是将标签的数据类型转换为float,用于支持向量机的计算。最后用指定的核函数kernel对训练数据进行训练,求解超平面方程的系数a和b。
相关问题

x_train = train.drop(['id','label'], axis=1) y_train = train['label'] x_test=test.drop(['id'], axis=1) def abs_sum(y_pre,y_tru): y_pre=np.array(y_pre) y_tru=np.array(y_tru) loss=sum(sum(abs(y_pre-y_tru))) return loss def cv_model(clf, train_x, train_y, test_x, clf_name): folds = 5 seed = 2021 kf = KFold(n_splits=folds, shuffle=True, random_state=seed) test = np.zeros((test_x.shape[0],4)) cv_scores = [] onehot_encoder = OneHotEncoder(sparse=False) for i, (train_index, valid_index) in enumerate(kf.split(train_x, train_y)): print('************************************ {} ************************************'.format(str(i+1))) trn_x, trn_y, val_x, val_y = train_x.iloc[train_index], train_y[train_index], train_x.iloc[valid_index], train_y[valid_index] if clf_name == "lgb": train_matrix = clf.Dataset(trn_x, label=trn_y) valid_matrix = clf.Dataset(val_x, label=val_y) params = { 'boosting_type': 'gbdt', 'objective': 'multiclass', 'num_class': 4, 'num_leaves': 2 ** 5, 'feature_fraction': 0.8, 'bagging_fraction': 0.8, 'bagging_freq': 4, 'learning_rate': 0.1, 'seed': seed, 'nthread': 28, 'n_jobs':24, 'verbose': -1, } model = clf.train(params, train_set=train_matrix, valid_sets=valid_matrix, num_boost_round=2000, verbose_eval=100, early_stopping_rounds=200) val_pred = model.predict(val_x, num_iteration=model.best_iteration) test_pred = model.predict(test_x, num_iteration=model.best_iteration) val_y=np.array(val_y).reshape(-1, 1) val_y = onehot_encoder.fit_transform(val_y) print('预测的概率矩阵为:') print(test_pred) test += test_pred score=abs_sum(val_y, val_pred) cv_scores.append(score) print(cv_scores) print("%s_scotrainre_list:" % clf_name, cv_scores) print("%s_score_mean:" % clf_name, np.mean(cv_scores)) print("%s_score_std:" % clf_name, np.std(cv_scores)) test=test/kf.n_splits return test def lgb_model(x_train, y_train, x_test): lgb_test = cv_model(lgb, x_train, y_train, x_test, "lgb") return lgb_test lgb_test = lgb_model(x_train, y_train, x_test) 这段代码运用了什么学习模型

这段代码运用了LightGBM模型(lgb)进行多分类任务的学习和预测。其中,使用了K折交叉验证(KFold)来划分训练集和验证集,避免过拟合和欠拟合。在训练过程中,使用了绝对误差和(abs_sum)作为损失函数。在LightGBM模型的参数设置上,使用了gbdt算法进行梯度提升决策树,num_class参数设置为4,表示有4个类别;num_leaves参数设置为2的5次方,表示叶节点的数量;feature_fraction和bagging_fraction是特征和样本的子抽样比例;learning_rate是学习率;early_stopping_rounds设置为200,表示在验证集上连续200次迭代中没有提高时,停止训练;n_jobs和nthread是并行训练的参数。最终,返回了测试集上的预测结果(lgb_test)。

if loss == "SoftCE_dice": DiceLoss_fn = DiceLoss(mode='multiclass') SoftCrossEntropy_fn = SoftCrossEntropyLoss(smooth_factor=0.1) loss_fn = lo.JointLoss().to(DEVICE) else: LovaszLoss_fn = LovaszLoss(mode='multiclass') SoftCrossEntropy_fn = SoftCrossEntropyLoss(smooth_factor=0.1) loss_fn = lo.JointLoss().to(DEVICE)

这段代码是一个条件语句,根据`loss`变量的值选择不同的损失函数。 如果`loss`等于`"SoftCE_dice"`,则选择Soft Cross Entropy Dice Loss。这个损失函数由两个部分组成:Soft Cross Entropy Loss和Dice Loss。其中,Soft Cross Entropy Loss是一种常规的交叉熵损失函数,用于多分类问题。Dice Loss是一种基于Dice系数的损失函数,用于处理分割问题。两个损失函数被结合在一起,以帮助提高模型的性能。 如果`loss`不等于`"SoftCE_dice"`,则选择Lovasz Softmax Loss。这个损失函数是一种对称交叉熵损失函数,用于多标签分类问题。它基于Lovasz扩展,能够更好地处理不完整分割问题。和Soft Cross Entropy Loss一样,它也被结合在一起,以帮助提高模型的性能。 无论选择哪种损失函数,都会使用Soft Cross Entropy Loss作为其中一个组成部分,并使用Joint Loss将多个损失函数结合在一起。最终的损失函数被赋值给`loss_fn`变量,并移动到计算设备上(通常是GPU)。 希望能够解答您的问题!

相关推荐

解释以下代码:def cv_model(clf, train_x, train_y, test_x, clf_name): folds = 5 seed = 2021 kf = KFold(n_splits=folds, shuffle=True, random_state=seed) test = np.zeros((test_x.shape[0],4)) cv_scores = [] onehot_encoder = OneHotEncoder(sparse=False) for i, (train_index, valid_index) in enumerate(kf.split(train_x, train_y)): print('************************************ {} ************************************'.format(str(i+1))) trn_x, trn_y, val_x, val_y = train_x.iloc[train_index], train_y[train_index], train_x.iloc[valid_index], train_y[valid_index] if clf_name == "lgb": train_matrix = clf.Dataset(trn_x, label=trn_y) valid_matrix = clf.Dataset(val_x, label=val_y) params = { 'boosting_type': 'gbdt', 'objective': 'multiclass', 'num_class': 4, 'num_leaves': 2 ** 5, 'feature_fraction': 0.8, 'bagging_fraction': 0.8, 'bagging_freq': 4, 'learning_rate': 0.1, 'seed': seed, 'nthread': 28, 'n_jobs':24, 'verbose': -1, } model = clf.train(params, train_set=train_matrix, valid_sets=valid_matrix, num_boost_round=2000, verbose_eval=100, early_stopping_rounds=200) val_pred = model.predict(val_x, num_iteration=model.best_iteration) test_pred = model.predict(test_x, num_iteration=model.best_iteration) val_y=np.array(val_y).reshape(-1, 1) val_y = onehot_encoder.fit_transform(val_y) print('预测的概率矩阵为:') print(test_pred) test += test_pred score=abs_sum(val_y, val_pred) cv_scores.append(score) print(cv_scores) print("%s_scotrainre_list:" % clf_name, cv_scores) print("%s_score_mean:" % clf_name, np.mean(cv_scores)) print("%s_score_std:" % clf_name, np.std(cv_scores)) test=test/kf.n_splits return test

拆分数据集 X_train, X_test, y_train, y_test = train_test_split(heartbeats_image, labels, test_size=0.2, random_state=42) X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.2, random_state=42) # 保存数据集 np.save('X_train.npy', X_train) np.save('X_val.npy', X_val) np.save('X_test.npy', X_test) np.save('y_train.npy', y_train) np.save('y_val.npy', y_val) np.save('y_test.npy', y_test) from keras.models import Sequential from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout # 定义卷积神经网络 model = Sequential([ Conv2D(filters=32, kernel_size=(3,3), activation='relu', input_shape=(255,255,1)), MaxPooling2D(pool_size=(2,2)), Conv2D(filters=64, kernel_size=(3,3), activation='relu'), MaxPooling2D(pool_size=(2,2)), Conv2D(filters=128, kernel_size=(3,3), activation='relu'), MaxPooling2D(pool_size=(2,2)), Flatten(), Dense(units=128, activation='relu'), Dropout(0.5), Dense(units=1, activation='sigmoid') ]) model.add(Dense(20, activation='softmax')) # 编译模型 model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) # 训练模型 history = model.fit(X_train, y_train, epochs=10, validation_data=(X_val, y_val)) # 保存模型 model.save('my_model.h5') from sklearn.metrics import confusion_matrix, roc_curve, auc import matplotlib.pyplot as plt # 对测试集进行预测 y_pred = model.predict(X_test) # 将预测结果转换为标签 y_pred_labels = (y_pred > 0.5).astype(int) from sklearn.metrics import confusion_matrix from sklearn.utils.multiclass import unique_labels # 将多标签指示器转换成标签数组 y_test = unique_labels(y_test) y_pred_labels = unique_labels(y_pred_labels) # 计算混淆矩阵 cm = confusion_matrix(y_test, y_pred_labels) # 绘制混淆矩阵 plt.imshow(cm, cmap=plt.cm.Blues) plt.xlabel("Predicted labels") plt.ylabel("True labels") plt.xticks([0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19], ['N','L','R','A','a','J','S','V','F','[','!',']','e','j','E','/','f','x','Q','|']) plt.yticks([0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19], ['N','L','R','A','a','J','S','V','F','[','!',']','e','j','E','/','f','x','Q','|']) plt.title('Confusion matrix') plt.colorbar() plt.show()之后怎么绘制ROC曲线,let's think step by step

import pandas as pd from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, confusion_matrix,classification_report, roc_curve, auc import seaborn as sns import matplotlib.pyplot as plt # 读取数据 data = pd.read_excel('E:/桌面/预测脆弱性/20230523/预测样本/预测样本.xlsx') # 分割训练集和验证集 train_data = data.sample(frac=0.8, random_state=1) test_data = data.drop(train_data.index) # 定义特征变量和目标变量 features = ['高程', '起伏度', '桥梁长', '道路长', '平均坡度', '平均地温', 'T小于0', '相态'] target = '交通风险' # 训练随机森林模型 rf = RandomForestClassifier(n_estimators=100, random_state=1) rf.fit(train_data[features], train_data[target]) # 在验证集上进行预测并计算精度、召回率和F1值等指标 pred = rf.predict(test_data[features]) accuracy = accuracy_score(test_data[target], pred) confusion_mat = confusion_matrix(test_data[target], pred) classification_rep = classification_report(test_data[target], pred) print('Accuracy:', accuracy) print('Confusion matrix:') print(confusion_mat) print('Classification report:') print(classification_rep) # 输出混淆矩阵图片 sns.heatmap(confusion_mat, annot=True, cmap="Blues") plt.show() # 计算并绘制ROC曲线和AUC值 fpr, tpr, thresholds = roc_curve(test_data[target], pred) roc_auc = auc(fpr, tpr) print('AUC:', roc_auc) plt.figure() lw = 2 plt.plot(fpr, tpr, color='darkorange', lw=lw, label='ROC curve (area = %0.2f)' % roc_auc) plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic') plt.legend(loc="lower right") plt.show() # 读取新数据文件并预测结果 new_data = pd.read_excel('E:/桌面/预测脆弱性/20230523/预测样本/预测结果/交通风险预测096.xlsx') new_pred = rf.predict(new_data[features]) new_data['交通风险预测结果'] = new_pred new_data.to_excel('E:/桌面/预测脆弱性/20230523/预测样本/预测结果/交通风险预测096结果.xlsx', index=False)改进代码使用多元roc曲线

最新推荐

recommend-type

组成原理课程实验:MIPS 流水线CPU、实现36条指令、转发、冒险检测-内含源码和说明书.zip

组成原理课程实验:MIPS 流水线CPU、实现36条指令、转发、冒险检测-内含源码和说明书.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用 Python 画一个可以动的爱心

好的,我可以帮助您使用Python来绘制一个动态的爱心。您可以使用turtle库来实现。以下是实现代码: ```python import turtle import math # 设置画布和画笔 canvas = turtle.Screen() canvas.bgcolor("black") pencil = turtle.Turtle() pencil.speed(0) pencil.color("red", "pink") pencil.pensize(3) # 定义爱心函数 def draw_love(heart_size, x_offset=0, y_offset=0):
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

已知n个人(以编号0,1,2,3...n-1分别表示)围坐在一张圆桌周围。从编号为0的人开始报数1,数到m的那个人出列;他的下一个人又从1开始报数,数到m+1的那个人又出列(每次报数值加1);依此规律重复下去,直到圆桌周围的人全部出列。用递归方法解决

这个问题可以使用递归方法解决。下面是一个思路: 1. 定义一个函数,接收三个参数:n、m、i,表示还剩下n个人,每次数到m时出列,当前报数的人是i; 2. 如果n=1,返回i,即最后留下的那个人的编号; 3. 否则,计算出下一个出列的人的编号j,通过递归调用函数解决n-1个人的问题,其结果为k; 4. 如果k < j,即当前i之后出列的人的编号为k,需要将k转换为在i之前出列的编号,返回值为 k+(n-1); 5. 如果k>=j,即当前i之后出列的人的编号为k,返回值为 k-(j-1); 下面是对应的Python代码: ```python def josephus(n, m, i):
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。