使用cleanlab置信实现猫狗分类图像的错误标签的查找,用pytorch框架实现resnet8的分类

时间: 2024-05-03 15:21:52 浏览: 14
1. 使用cleanlab查找错误标签 cleanlab是一个Python库,可用于检测和纠正数据集中的错误标签。下面是使用cleanlab查找猫狗分类图像中的错误标签的示例代码: ``` import cleanlab import numpy as np import pandas as pd from sklearn.metrics import accuracy_score # 加载数据集 train_dir = 'train/' train_df = pd.read_csv('train.csv') train_df['path'] = train_df['id'].map(lambda x: os.path.join(train_dir, '{}.jpg'.format(x))) train_df['label'] = train_df['breed'].map(lambda x: class_to_idx[x]) # 定义模型和数据增强 model = torchvision.models.resnet18(pretrained=True) model.fc = nn.Linear(512, num_classes) criterion = nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9) train_transforms = transforms.Compose([ transforms.RandomResizedCrop(size=256, scale=(0.8, 1.0)), transforms.RandomRotation(degrees=15), transforms.RandomHorizontalFlip(), transforms.CenterCrop(size=224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) # 获取训练集标签和预测概率 train_dataset = CustomDataset(train_df, train_transforms) train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) train_labels = np.array(train_df['label']) train_probs = cleanlab.util.label_model_predictions(model, train_loader) # 查找错误标签 train_errors = cleanlab.pruning.get_noise_indices( s=train_labels, psx=train_probs, sorted_index_method='normalized_margin', # 使用标准化边界排序 prune_method='prune_by_class', # 根据类别删除标签 num_to_remove_per_class=2, # 每个类别删除两个标签 seed=0 ) # 打印错误标签 print("Number of errors found:", len(train_errors)) print("Train accuracy:", accuracy_score(train_labels, np.argmax(train_probs, axis=1))) print("Train accuracy after cleaning:", accuracy_score(train_labels[train_errors], np.argmax(train_probs[train_errors], axis=1))) ``` 2. 使用pytorch实现resnet8分类模型 下面是使用pytorch实现resnet8分类模型的示例代码: ``` import torch.nn as nn class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_planes, planes, stride=1): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion*planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion*planes) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = F.relu(out) return out class ResNet8(nn.Module): def __init__(self, block, num_blocks, num_classes=10): super(ResNet8, self).__init__() self.in_planes = 16 self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(16) self.layer1 = self._make_layer(block, 16, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, 32, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, 64, num_blocks[2], stride=2) self.linear = nn.Linear(64, num_classes) def _make_layer(self, block, planes, num_blocks, stride): strides = [stride] + [1]*(num_blocks-1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, stride)) self.in_planes = planes * block.expansion return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = F.avg_pool2d(out, 8) out = out.view(out.size(0), -1) out = self.linear(out) return out def ResNet8(): return ResNet8(BasicBlock, [1, 1, 1], num_classes=2) ```

相关推荐

最新推荐

recommend-type

Pytorch 使用CNN图像分类的实现

在4*4的图片中,比较外围黑色像素点和内圈黑色像素点个数的大小将图片分类 如上图图片外围黑色像素点5个大于内圈黑色像素点1个分为0类反之1类 想法 通过numpy、PIL构造4*4的图像数据集 构造自己的数据集类 读取...
recommend-type

pytorch 实现数据增强分类 albumentations的使用

albumentations包是一种针对数据增强专门写的API,里面基本包含大量的数据增强手段,比起pytorch自带的ttransform更丰富,搭配使用效果更好。 代码和效果 import albumentations import cv2 from PIL import Image, ...
recommend-type

使用PyTorch训练一个图像分类器实例

今天小编就为大家分享一篇使用PyTorch训练一个图像分类器实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

pytorch实现mnist分类的示例讲解

今天小编就为大家分享一篇pytorch实现mnist分类的示例讲解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

PyTorch上搭建简单神经网络实现回归和分类的示例

本篇文章主要介绍了PyTorch上搭建简单神经网络实现回归和分类的示例,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。