opencv 图像配准c++代码
时间: 2023-07-24 22:15:02 浏览: 114
以下是使用OpenCV进行基于特征点匹配的图像配准的C++代码示例:
```c++
#include <opencv2/opencv.hpp>
using namespace std;
using namespace cv;
int main(int argc, char** argv)
{
// 加载需要进行配准的图像
Mat img1 = imread("img1.jpg", IMREAD_GRAYSCALE);
Mat img2 = imread("img2.jpg", IMREAD_GRAYSCALE);
// 提取图像中的特征点
Ptr<FeatureDetector> detector = ORB::create();
vector<KeyPoint> kp1, kp2;
detector->detect(img1, kp1);
detector->detect(img2, kp2);
// 对提取出的特征点进行描述
Ptr<DescriptorExtractor> extractor = ORB::create();
Mat desc1, desc2;
extractor->compute(img1, kp1, desc1);
extractor->compute(img2, kp2, desc2);
// 对两张图像中的特征点进行匹配
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce-Hamming");
vector<DMatch> matches;
matcher->match(desc1, desc2, matches);
// 筛选匹配的特征点
double min_dist = DBL_MAX, max_dist = 0;
for (int i = 0; i < desc1.rows; i++) {
double dist = matches[i].distance;
if (dist < min_dist) min_dist = dist;
if (dist > max_dist) max_dist = dist;
}
vector<DMatch> good_matches;
for (int i = 0; i < desc1.rows; i++) {
if (matches[i].distance <= max(2 * min_dist, 30.0)) {
good_matches.push_back(matches[i]);
}
}
// 计算变换矩阵
vector<Point2f> pts1, pts2;
for (int i = 0; i < good_matches.size(); i++) {
pts1.push_back(kp1[good_matches[i].queryIdx].pt);
pts2.push_back(kp2[good_matches[i].trainIdx].pt);
}
Mat H = findHomography(pts1, pts2, RANSAC);
// 应用变换矩阵进行配准
Mat img_aligned;
warpPerspective(img1, img_aligned, H, img1.size());
// 显示结果
imshow("img1", img1);
imshow("img2", img2);
imshow("img_aligned", img_aligned);
waitKey(0);
return 0;
}
```
以上代码中使用了ORB特征点检测和描述算法、BruteForce-Hamming特征点匹配算法以及RANSAC算法进行变换矩阵计算。在实际应用中,可能需要根据具体问题选用不同的算法并进行参数优化。
阅读全文