self.conv1x1 = ConvBNPReLU(nIn, n, 1, 1)
时间: 2023-05-14 09:05:20 浏览: 88
这是一个使用 ConvBNPReLU 函数的类的初始化函数,其中 nIn 是输入通道数,n 是输出通道数,1,1 是卷积核大小。这个函数的作用是对输入数据进行卷积操作,并使用 Batch Normalization 和 PReLU 激活函数进行处理。
相关问题
# 构建卷积神经网络结构 # 当前版本为卷积核大小5 * 5的版本 class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.conv1 = nn.Conv2d(5, 16, 3, padding='same') self.bn1 = nn.BatchNorm2d(16) self.conv2 = nn.Conv2d(16, 16, 3, padding=1) self.bn2 = nn.BatchNorm2d(16) self.conv3 = nn.Conv2d(16, 32, 3, padding=1) self.bn3 = nn.BatchNorm2d(32) self.conv4 = nn.Conv2d(32, 64, 3, padding=1) self.bn4 = nn.BatchNorm2d(64) self.conv5 = nn.Conv2d(64, 128, 3, padding=1) self.bn5 = nn.BatchNorm2d(128) self.conv6 = nn.Conv2d(128, 128, 3, padding=1) self.bn6 = nn.BatchNorm2d(128) self.conv_t6 = nn.ConvTranspose2d(128, 64, 3, padding=1) self.bn_t6 = nn.BatchNorm2d(64) self.conv_t5 = nn.ConvTranspose2d(64, 32, 3, padding=1) self.bn_t5 = nn.BatchNorm2d(32) self.conv_t4 = nn.ConvTranspose2d(32, 16, 3, padding=1) self.bn_t4 = nn.BatchNorm2d(16) self.conv_t3 = nn.ConvTranspose2d(16, 16, 3, padding=1) self.bn_t3 = nn.BatchNorm2d(16) self.conv_t2 = nn.ConvTranspose2d(16, 8, 3, padding=1) self.bn_t2 = nn.BatchNorm2d(8) self.conv_1 = nn.Conv2d(8, 2, 3, padding='same') self.bn_1 = nn.BatchNorm2d(2) self.tan_h = nn.Tanh() def forward(self, x): x1 = self.tan_h(self.bn1(self.conv1(x))) x2 = self.tan_h(self.bn2(self.conv2(x1)))**2 x3 = self.tan_h(self.bn3(self.conv3(x2)))**2 x4 = self.tan_h(self.bn4(self.conv4(x3)))**2 x5 = self.tan_h(self.bn5(self.conv5(x4)))**2 x6 = self.tan_h(self.bn6(self.conv6(x5)))**2 x_t6 = self.tan_h(self.bn_t6(self.conv_t6(x6)))**2 x_t5 = self.tan_h(self.bn_t5(self.conv_t5(x_t6)))**2 x_t4 = self.tan_h(self.bn_t4(self.conv_t4(x_t5)))**2 x_t3 = self.tan_h(self.bn_t3(self.conv_t3(x_t4))) ** 2 x_t2 = self.tan_h(self.bn_t2(self.conv_t2(x_t3))) ** 2 x_1 = self.tan_h(self.bn_1(self.conv_1(x_t2))) return x_1 # 读取模型 需要提前定义对应的类 model = torch.load("model1.pt") # 定义损失函数和优化器 criterion = nn.MSELoss() optimizer = optim.ASGD(model.parameters(), lr=0.01) 详细说明该神经网络的结构,功能以及为什么要选择这个
该神经网络的结构是一个基于卷积神经网络的自编码器,由卷积层和反卷积层构成。自编码器可以将输入数据进行压缩编码,然后再解码还原成原始数据。
该神经网络的输入数据是一个5通道的图像,经过6个卷积层和6个反卷积层的处理,最终输出一个2通道的图像。其中,卷积核大小为5 * 5,使用了批归一化和Tanh激活函数,反卷积核大小也为3 * 3,使用了ASGD优化器和MSELoss损失函数。
选择该神经网络的原因是,它可以对图像数据进行有效的压缩和还原,同时能够保留原始数据的重要特征,适用于图像处理领域。而且,卷积神经网络在图像处理方面表现出色,具有较高的准确性和鲁棒性。
什么意思?class SegResNet(nn.Module): def __init__(self, num_classes): super().__init__() self.pretrained_net = FeatureResNet() self.relu = nn.ReLU(inplace=True) self.conv5 = conv(512, 256, stride=2, transposed=True) self.bn5 = bn(256) self.conv6 = conv(256, 128, stride=2, transposed=True) self.bn6 = bn(128) self.conv7 = conv(128, 64, stride=2, transposed=True) self.bn7 = bn(64) self.conv8 = conv(64, 64, stride=2, transposed=True) self.bn8 = bn(64) self.conv9 = conv(64, 32, stride=2, transposed=True) self.bn9 = bn(32) self.conv10 = conv(32, num_classes, kernel_size=7) init.constant(self.conv10.weight, 0) # Zero init def forward(self, x): x1, x2, x3, x4, x5 = self.pretrained_net(x) x = self.relu(self.bn5(self.conv5(x5))) x = self.relu(self.bn6(self.conv6(x + x4))) x = self.relu(self.bn7(self.conv7(x + x3))) x = self.relu(self.bn8(self.conv8(x + x2))) x = self.relu(self.bn9(self.conv9(x + x1))) x = self.conv10(x) return x
这段代码定义了一个名为SegResNet的类,继承自nn.Module。该类的构造函数中传入了一个参数num_classes,用于指定输出的类别数。在构造函数中,首先通过调用FeatureResNet类创建了一个预训练模型pretrained_net;接着定义了一系列的卷积、归一化和ReLU激活函数操作,构成了一个U-Net结构,用于对输入图像进行分割。最后,通过init.constant对最后一层卷积的权重进行了零初始化。
在该类的forward函数中,首先将输入数据x经过预训练模型pretrained_net进行特征提取,得到x1、x2、x3、x4和x5五个特征图;接着,将x5经过一系列的卷积和归一化操作得到x,然后将x与x4相加,再进行一系列的卷积和归一化操作得到x,以此类推,直到x1。最后,将x经过一层7x7卷积,得到最终的分割结果。
阅读全文