写一段用PSO优化Kmeans簇中心点的方法
时间: 2024-02-02 19:03:43 浏览: 124
PSO优化Kmeans,pso优化bp神经网络,matlab
5星 · 资源好评率100%
下面是使用粒子群优化(Particle Swarm Optimization,PSO)算法优化KMeans簇中心点的Python实现:
```
import numpy as np
from sklearn.cluster import KMeans
class KMeansPSO():
def __init__(self, n_clusters, n_particles, n_iterations):
self.n_clusters = n_clusters # 聚类数目
self.n_particles = n_particles # 粒子数目
self.n_iterations = n_iterations # 迭代次数
self.particles = np.zeros((self.n_particles, self.n_clusters * 2)) # 粒子群,每个粒子包含k个簇中心点,每个点包含2个维度
self.particles_fitness = np.zeros((self.n_particles, )) # 粒子群适应度
self.gbest = np.zeros((self.n_clusters * 2, )) # 全局最优解(全局最优簇中心点)
self.gbest_fitness = np.inf # 全局最优适应度
self.w = 0.5 # 惯性权重
self.c1 = 1.5 # 个体学习因子
self.c2 = 1.5 # 全局学习因子
def init_particles(self, data):
# 初始化粒子群,随机生成k个簇中心点
kmeans = KMeans(n_clusters=self.n_clusters)
kmeans.fit(data)
centers = kmeans.cluster_centers_
for i in range(self.n_particles):
self.particles[i] = centers.ravel() + np.random.randn(self.n_clusters * 2)
def update_particles_fitness(self, data):
# 计算粒子群适应度
for i in range(self.n_particles):
kmeans = KMeans(n_clusters=self.n_clusters, init=self.particles[i].reshape((self.n_clusters, 2)))
kmeans.fit(data)
self.particles_fitness[i] = kmeans.inertia_
if self.particles_fitness[i] < self.gbest_fitness:
self.gbest_fitness = self.particles_fitness[i]
self.gbest = kmeans.cluster_centers_.ravel()
def update_particles_velocity(self):
# 更新粒子群速度
for i in range(self.n_particles):
r1 = np.random.rand(self.n_clusters * 2)
r2 = np.random.rand(self.n_clusters * 2)
self.particles[i] += self.w * self.particles[i] \
+ self.c1 * r1 * (self.gbest - self.particles[i]) \
+ self.c2 * r2 * (self.particles[i] - self.gbest)
def run(self, data):
self.init_particles(data)
self.update_particles_fitness(data)
for i in range(self.n_iterations):
self.update_particles_velocity()
self.update_particles_fitness(data)
return self.gbest.reshape((self.n_clusters, 2))
```
使用方法如下:
```
import numpy as np
from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans
from kmeans_pso import KMeansPSO
# 生成数据
X, y = make_blobs(n_samples=1000, centers=4, random_state=42)
# 使用KMeans算法
kmeans = KMeans(n_clusters=4)
kmeans.fit(X)
print("KMeans簇中心点:")
print(kmeans.cluster_centers_)
# 使用PSO优化KMeans算法
kmeans_pso = KMeansPSO(n_clusters=4, n_particles=50, n_iterations=100)
centers = kmeans_pso.run(X)
print("使用PSO优化后的簇中心点:")
print(centers)
```
在上述代码中,我们首先使用sklearn中的KMeans算法对数据进行聚类,然后使用KMeansPSO类对KMeans算法进行优化。在KMeansPSO类中,我们使用粒子群优化算法来搜索最优的簇中心点,其中粒子群的每个粒子包含k个簇中心点,每个点包含2个维度。在每次迭代中,我们首先计算粒子群的适应度(即KMeans算法的损失函数),然后更新粒子群的速度和位置,最终得到全局最优解(即最优簇中心点)。
阅读全文