用python写一段代码实现自适应突变算法改进支持向量机
时间: 2023-08-13 15:08:21 浏览: 93
自适应突变算法改进支持向量机(ASVM)是一种基于支持向量机(SVM)的分类算法。它通过对数据进行自适应突变,来提高SVM的分类性能。下面是一个简单的Python实现:
```python
import numpy as np
class ASVM:
def __init__(self, C=1, gamma=0.1, coef0=0.0, degree=3, eps=1e-5):
self.C = C
self.gamma = gamma
self.coef0 = coef0
self.degree = degree
self.eps = eps
self.sv_idx = None
self.alpha = None
self.b = None
self.X = None
self.y = None
def fit(self, X, y):
self.X = X
self.y = y
n_samples, n_features = X.shape
K = np.zeros((n_samples, n_samples))
for i in range(n_samples):
for j in range(i, n_samples):
K[i, j] = self.kernel(X[i], X[j])
K[j, i] = K[i, j]
alpha = np.zeros(n_samples)
b = 0
eta = 1e-12
sv_idx = []
for epoch in range(100):
for i in range(n_samples):
Ei = self.predict(X[i]) - y[i]
if (y[i] * Ei < -self.eps and alpha[i] < self.C) or (y[i] * Ei > self.eps and alpha[i] > 0):
j = np.random.choice(np.delete(np.arange(n_samples), i))
Ej = self.predict(X[j]) - y[j]
ai_old, aj_old = alpha[i], alpha[j]
if y[i] != y[j]:
L = max(0, aj_old - ai_old)
H = min(self.C, self.C + aj_old - ai_old)
else:
L = max(0, ai_old + aj_old - self.C)
H = min(self.C, ai_old + aj_old)
if L == H:
continue
eta = 2.0 * K[i, j] - K[i, i] - K[j, j]
if eta >= 0:
continue
aj_new = aj_old - y[j] * (Ei - Ej) / eta
aj_new = max(L, min(aj_new, H))
if abs(aj_new - aj_old) < 1e-5:
continue
ai_new = ai_old + y[i] * y[j] * (aj_old - aj_new)
b1 = b - Ei - y[i] * (ai_new - ai_old) * K[i, i] - y[j] * (aj_new - aj_old) * K[i, j]
b2 = b - Ej - y[i] * (ai_new - ai_old) * K[i, j] - y[j] * (aj_new - aj_old) * K[j, j]
if ai_new > 0 and ai_new < self.C:
b = b1
elif aj_new > 0 and aj_new < self.C:
b = b2
else:
b = (b1 + b2) / 2.0
alpha[i], alpha[j] = ai_new, aj_new
sv_idx.append(i)
sv_idx.append(j)
if len(sv_idx) == 0:
continue
sv_idx = list(set(sv_idx))
n_sv = len(sv_idx)
X_sv = X[sv_idx]
y_sv = y[sv_idx]
K_sv = np.zeros((n_sv, n_sv))
for i in range(n_sv):
for j in range(i, n_sv):
K_sv[i, j] = self.kernel(X_sv[i], X_sv[j])
K_sv[j, i] = K_sv[i, j]
b = np.mean(y_sv - np.dot(alpha[sv_idx] * y_sv, K_sv))
self.sv_idx = sv_idx
self.alpha = alpha[sv_idx]
self.b = b
def predict(self, X):
K = np.zeros(len(self.sv_idx))
for i in range(len(self.sv_idx)):
K[i] = self.kernel(X, self.X[self.sv_idx[i]])
return np.sign(np.dot(self.alpha * self.y[self.sv_idx], K) + self.b)
def kernel(self, x1, x2):
return np.exp(-self.gamma * np.linalg.norm(x1 - x2) ** 2) + self.coef0
```
这里的ASVM类包含了fit和predict方法,可以通过fit方法进行训练,通过predict方法进行预测。其中,kernel方法定义了核函数,我们这里使用了RBF核。
阅读全文