labels=np.array(exercise2.满意度) datalenth=5 df1=np.array(exercise2.东部) df2=np.array(exercise2.中部) df3=np.array(exercise2.西部) angles=np.linspace(0,2*np.pi,datalenth,endpoint=False) df1=np.concatenate((df1,[df1[0]])) df2=np.concatenate((df2,[df2[0]])) df3=np.concatenate((df3,[df3[0]]))
时间: 2023-05-19 19:05:27 浏览: 114
这是一段 Python 代码,用于绘制雷达图。其中,labels 是一个包含标签的数组,datalenth 是数据的长度,df1、df2、df3 分别是三个地区的数据。通过 np.linspace 函数生成角度数组,然后将每个地区的数据首尾相连,最后使用 matplotlib 库绘制雷达图。
相关问题
def read_data(data_dir) datas=[] labels=[] fpaths=[] for fname in os.listdir(data_dir) fpath=os.path.jion(data_dir,fname) fpaths.append(fpath) image=Image.open(fpath) data=np.array(image)/255.0 label=int(fname.spilt("_")[0]) datas.append(data) labels.append(label) datas=np.array(datas) labels=np.array(labels)
这段代码的作用是读取一个目录下的图像数据和标签,并将它们存储在一个数据集中。具体来说,它的实现如下:
1. 创建空的数据、标签和文件路径列表:`datas=[]`, `labels=[]`, `fpaths=[]`。
2. 遍历给定目录下的所有文件名:`for fname in os.listdir(data_dir)`
3. 构建每个文件的完整路径:`fpath=os.path.join(data_dir,fname)`,并将其添加到文件路径列表中:`fpaths.append(fpath)`。
4. 使用PIL库中的`Image.open()`方法打开当前文件的图像。
5. 将图像数据转换为NumPy数组,并进行归一化处理(将像素值除以255.0):`data=np.array(image)/255.0`。
6. 从文件名中提取标签信息,假设文件名的命名规则为"label_XXX.jpg",则提取标签的方法是通过下划线分割文件名并取第一个元素并转换为整数:`label=int(fname.split("_")[0])`。
7. 将图像数据和标签分别添加到数据和标签列表中:`datas.append(data)`, `labels.append(label)`。
8. 将数据和标签列表转换为NumPy数组:`datas=np.array(datas)`, `labels=np.array(labels)`。
这段代码的目的是将图像数据和标签加载到内存中,以便进行后续的数据处理和模型训练。
labels = np.array(features['actual']) features= features.drop('actual', axis = 1) feature_list = list(features.columns) features = np.array(features)features.shape
这段代码将原始的特征数据features中的标签(即需要预测的目标变量)保存到labels变量中,其中np.array()函数用于将Pandas数据框转换为NumPy数组。接着,它使用drop()函数将features中的'actual'列删除,因为它已经被保存到了labels中,而我们不需要将它作为特征输入到机器学习模型中。此外,它还创建了一个feature_list列表,其中包含了所有特征的名称,以备后续使用。最后,features也被转换为NumPy数组,并显示了其形状。这是因为很多机器学习算法需要输入NumPy数组而不是Pandas数据框。
阅读全文