def load_data(opt): print("Loading {} dataset..." .format(opt.network)) idx_features_labels = np.genfromtxt("{}.content" .format(opt.network), dtype=np.dtype(str)) features = sp.csr_matrix(idx_features_labels[:, 1:-1], dtype=np.float32) #特征 labels = encode_onehot(idx_features_labels[:, -1]) # 类别的one-hot编码 idx = np.array(idx_features_labels[:, 0], dtype=np.int32) idx_map = {j: i for i, j in enumerate(idx)} edges_unordered = np.genfromtxt("{}.cites".format(opt.network),dtype=np.float32) edges = np.array(list(map(idx_map.get, edges_unordered.flatten())), dtype=np.float32).reshape(edges_unordered.shape) # 编码到编号的转换 adj = sp.coo_matrix((np.ones(edges.shape[0]), (edges[:, 0], edges[:, 1])), shape=(labels.shape[0], labels.shape[0]), dtype=np.float32)
时间: 2024-04-02 12:34:31 浏览: 121
这是一个加载数据的函数,它的输入参数是 opt。函数会根据 opt 中的 network 字段的值来确定要加载哪个数据集。该函数会从文件中读取数据,其中 ".content" 文件包含节点的特征,".cites" 文件包含节点之间的边。函数会将节点的特征和标签进行编码,其中标签会进行 one-hot 编码。最后,函数会返回一个邻接矩阵 adj,表示节点之间的连接关系。
相关问题
概述这段代码的作用: # Update image weights (optional) if opt.image_weights: # Generate indices if rank in [-1, 0]: cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx # Broadcast if DDP if rank != -1: indices = (torch.tensor(dataset.indices) if rank == 0 else torch.zeros(dataset.n)).int() dist.broadcast(indices, 0) if rank != 0: dataset.indices = indices.cpu().numpy()
这段代码的作用是在训练神经网络时,根据图像的权重对图像进行采样,以提高模型对低频类别的分类准确性。具体实现方式是根据训练数据集中每个类别的权重,计算每个图像的权重,并将其用于随机采样。如果使用了分布式数据并行(DDP)训练,还会进行数据广播以确保每个进程使用相同的采样索引。这段代码中的具体实现细节可能会因为不同的神经网络结构、训练任务和数据集而略有不同。
下载别人的数据集在YOLOV5进行训练发现出现报错,请给出具体正确的处理拌饭Plotting labels... C:\ProgramData\Anaconda3\envs\pytorch1\lib\site-packages\seaborn\axisgrid.py:118: UserWarning: The figure layout has changed to tight self._figure.tight_layout(*args, **kwargs) autoanchor: Analyzing anchors... anchors/target = 4.24, Best Possible Recall (BPR) = 0.9999 Image sizes 640 train, 640 test Using 0 dataloader workers Logging results to runs\train\exp20 Starting training for 42 epochs... Epoch gpu_mem box obj cls total labels img_size 0%| | 0/373 [00:00<?, ?it/s][ WARN:0@20.675] global loadsave.cpp:248 cv::findDecoder imread_('C:/Users/Administrator/Desktop/Yolodone/VOCdevkit/labels/train'): can't open/read file: check file path/integrity 0%| | 0/373 [00:00<?, ?it/s] Traceback (most recent call last): File "C:\Users\Administrator\Desktop\Yolodone\train.py", line 543, in <module> train(hyp, opt, device, tb_writer) File "C:\Users\Administrator\Desktop\Yolodone\train.py", line 278, in train for i, (imgs, targets, paths, _) in pbar: # batch ------------------------------------------------------------- File "C:\ProgramData\Anaconda3\envs\pytorch1\lib\site-packages\tqdm\std.py", line 1178, in __iter__ for obj in iterable: File "C:\Users\Administrator\Desktop\Yolodone\utils\datasets.py", line 104, in __iter__ yield next(self.iterator) File "C:\ProgramData\Anaconda3\envs\pytorch1\lib\site-packages\torch\utils\data\dataloader.py", line 633, in __next__ data = self._next_data() File "C:\ProgramData\Anaconda3\envs\pytorch1\lib\site-packages\torch\utils\data\dataloader.py", line 677, in _next_data data = self._dataset_fetcher.fetch(index) # may raise StopIteration File "C:\ProgramData\Anaconda3\envs\pytorch1\lib\site-packages\torch\utils\data\_utils\fetch.py", line 51, in fetch data = [self.dataset[idx] for idx in possibly_batched_index] File "C:\ProgramData\Anaconda3\envs\pytorch1\lib\site-packages\torch\utils\data\_utils\fetch.py", line 51, in <listcomp> data = [self.dataset[idx] for idx in possibly_batched_index] File "C:\Users\Administrator\Desktop\Yolodone\utils\datasets.py", line 525, in __getitem__ img, labels = load_mosaic(self, index) File "C:\Users\Administrator\Desktop\Yolodone\utils\datasets.py", line 679, in load_mosaic img, _, (h, w) = load_image(self, index) File "C:\Users\Administrator\Desktop\Yolodone\utils\datasets.py", line 634, in load_image assert img is not None, 'Image Not Found ' + path AssertionError: Image Not Found C:/Users/Administrator/Desktop/Yolodone/VOCdevkit/labels/train Process finished with exit code 1
根据错误日志,出现了以下几个错误:
1. `cv::find imread_('C:/Users/Administrator/Desktop/Yolodone/VOCdevkit/labels/train'): can't open/read file: check file path/integrity`:这个错误提示无法打开或读取文件,请检查文件路径和文件完整性。
2. `AssertionError: Image Not Found C:/Users/Administrator/Desktop/Yolodone/VOCdevkit/labels/train`:这个错误提示图片未找到,请检查图片路径是否正确。
针对这些错误,你可以采取以下解决方法:
1. 检查文件路径和文件完整性:确保数据集中的标签和图像文件都存在于相应的目录中,并且文件名与代码中的路径一致。
2. 检查图片路径是否正确:查看代码中加载图像的部分,确保图像路径正确,包括文件名和文件后缀。
请注意,这些错误可能还有其他原因,需要根据具体情况进行排查。
阅读全文
相关推荐















