解释此段MATLAB代码if (stats(i,4)<0.01)&(stats(i,1)>0.6) disp('回归方程显著-------模型成立');
时间: 2024-03-04 19:54:15 浏览: 131
这段MATLAB代码是一个条件语句,其中包含两个条件:
1. `(stats(i,4)<0.01)`:判断第i个数据的第4个统计量是否小于0.01;
2. `(stats(i,1)>0.6)`:判断第i个数据的第1个统计量是否大于0.6;
如果两个条件都满足,即第i个数据的第4个统计量小于0.01并且第1个统计量大于0.6,那么会执行`disp('回归方程显著-------模型成立')`语句,即输出字符串"回归方程显著-------模型成立"。这段代码的作用是判断一个回归模型是否成立。
相关问题
对以下多元回归分析MATLAB代码进行分析,残差分析,x=[15037 18.8 1366 17001 18 1519 18718 3.1 1644 21826 3.4 1893 26937 6.4 2311 35260 14.7 2998 48108 24.1 4044 59811 17.1 5046 70142 8.3 5846 78061 2.8 6420 83024 -0.8 6796 88479 -1.4 7159 98000 0.4 7858 108068 0.7 8622 119096 -0.8 9398 135174 1.2 10542 159587 3.9 12336 184089 1.8 14040 213132 1.5 16024 235367 1.7 17535 277654 1.9 19264]; y=[15.73 15.04 14.39 12.98 11.6 11.45 11.21 10.55 10.42 10.06 9.14 8.18 7.58 6.95 6.45 6.01 5.87 5.89 5.38 5.24 5.45]; [m,n]=size(x); X=[ones(m,1) x]; [m1,n1]=size(X); [m2,n2]=size(y); for i=1:n2 %b 为参数,bint 回归系数的区间估计,r 为残差, %rint 为置信区间,stats 用于回归模型检验 [b(:,i),bint,r,rint,stats(i,:)]=regress(y(:,i),X); [mm,nn]=size(b); for jj=1:m1 temp=0; for ii=1:mm yy(jj,i)=temp+b(ii,i)*X(jj,ii); temp=yy(jj,i); end end xiangdui_wucha(1,i)=abs(abs(y(1,i))-abs(yy(1,i)))/abs(y(1,i)); if n2~=1 subplot(2,n2/2,i); rcoplot(r,rint)%残差分析,作出残差及其置信区间 else rcoplot(r,rint)%残差分析,作出残差及其置信区间 end end disp('参数'); b %参数计算 disp('预测结果'); yy %检验回归模型:相关系数 r^2=stats(1,:)越接近 1 回归方程越显著 %F=stats(2,:)值越大回归方程越显著、p=stats(3,:)<0.01 时回归模型成立 disp('回归模型检验:'); format long stats for i=1:n2 if (stats(i,4)<0.01)&(stats(i,1)>0.6) disp('回归方程显著-------模型成立'); end end format short disp('相对误差'); xiangdui_wucha%第一行原始值与预测值的相对误差
这段MATLAB代码实现了多元线性回归分析,并且进行了残差分析。其中,x和y分别是自变量和因变量的数据,使用regress函数拟合线性回归模型,得到回归系数b、置信区间bint、残差r和置信区间rint。然后使用回归系数和自变量计算预测值yy,并计算原始值与预测值的相对误差。最后进行回归模型检验,包括相关系数r^2、F值和p值,以及判断回归方程是否显著。如果回归方程显著,并且相关系数大于0.6且p值小于0.01,则认为回归模型成立。
对于残差分析,使用rcoplot函数作出残差及其置信区间,并且使用subplot函数在多个子图中展示残差分析结果。如果因变量y的维度大于1,则使用2行n2/2列的子图展示,否则使用1行1列的子图展示。
阅读全文