pythonopencv视频目标识别
时间: 2023-09-05 19:13:43 浏览: 100
使用Python和OpenCV实现视频目标识别的步骤如下:
1. 导入必要的库:
```python
import cv2
import numpy as np
```
2. 加载视频文件:
```python
cap = cv2.VideoCapture('video.mp4')
```
3. 定义目标对象的特征,例如颜色、形状等:
```python
target_color = (0, 255, 0) # 绿色
target_shape = cv2.imread('target.jpg', 0) # 灰度图像
```
4. 循环读取视频帧:
```python
while cap.isOpened():
ret, frame = cap.read() # 读取一帧
if ret == False:
break
# 处理当前帧
```
5. 在每一帧中寻找目标对象:
```python
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # 转为灰度图像
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY) # 二值化
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # 寻找轮廓
for cnt in contours:
area = cv2.contourArea(cnt)
if area > 1000: # 面积太小的轮廓不考虑
# 判断是否为目标对象
# 如果是,标记目标对象
# 如果不是,继续寻找
```
6. 在目标对象周围画框:
```python
x, y, w, h = cv2.boundingRect(cnt)
cv2.rectangle(frame, (x, y), (x+w, y+h), target_color, 2)
```
7. 显示处理后的视频帧:
```python
cv2.imshow('frame', frame)
if cv2.waitKey(25) & 0xFF == ord('q'): # 按q键退出
break
```
完整代码示例:
```python
import cv2
import numpy as np
cap = cv2.VideoCapture('video.mp4')
target_color = (0, 255, 0) # 绿色
target_shape = cv2.imread('target.jpg', 0) # 灰度图像
while cap.isOpened():
ret, frame = cap.read()
if ret == False:
break
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
for cnt in contours:
area = cv2.contourArea(cnt)
if area > 1000:
x, y, w, h = cv2.boundingRect(cnt)
# 判断是否为目标对象
if np.abs(cv2.matchShapes(cnt, target_shape, 1, 0.0)) < 0.1:
cv2.rectangle(frame, (x, y), (x+w, y+h), target_color, 2)
else:
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 0, 255), 2)
cv2.imshow('frame', frame)
if cv2.waitKey(25) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
```
在代码中,我们使用了OpenCV的一些函数,如`cv2.cvtColor`、`cv2.threshold`、`cv2.findContours`、`cv2.boundingRect`和`cv2.rectangle`等,这些函数都是常用的图像处理函数。具体的使用方法可以查看OpenCV官方文档。
阅读全文